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I
n The Mathematics of Life, celebrated 

mathematician Ian Stewart provides a 

fascinating overview of the role of mathematics 

in life science—from the study of cellular organization to 

the behavior and evolution of entire living beings—and 

explains how mathematicians will contribute even more 

to biology in the years ahead.

Biology has long been thought of as the 

straightforward study of plants, animals, and insects, 

and biologists have all too often dismissed the 

possible role of other fi elds—like mathematics—in 

contributing meaningfully to our understanding of 

living things. Today, however, the picture is changing 

rapidly. Relatively new discoveries in evolution and 

biochemistry have revolutionized the way scientists 

think about life and have opened the fl oodgates to a slew 

of mathematical applications in the life sciences.

In characteristically clear, entertaining fashion, 

Stewart explains how mathematicians and biologists 

have come to work together on some of the most 

diffi cult scientifi c problems that the human race has 

ever tackled—including untangling the nature and 

origin of life itself. Today, mathematical patterns in 

living creatures are being used to trace everything 

from the human genome, to the structure of viruses, 

to the forms of organisms and their interaction in the 

broader ecosystem. Mathematics also offers new and 

sometimes startling perspectives on evolution, whose 
A Member of the Perseus Books Group

www.basicbooks.com

IAN STEWART is Emeritus Professor 

of Mathematics and active researcher at Warwick 

University in England. His writing has appeared in 

publications including New Scientist, Discover, and 

Scientifi c American. He lives in Coventry, England.

Jacket image © boldandnoble.com

06/11

Science / Mathematics

many important processes take too long to observe, or 

happened hundreds of millions of years ago and have 

left only cryptic traces. Mathematicians have been 

able to trace patterns of inheritance and population 

over time—scales ranging from millions to hundreds 

of years—and in the process have shown how we are 

changing at this very moment.  

A wonderfully whimsical introduction to the vital 

but little-recognized field of “biomathematics,” Ian 

Stewart’s compelling book explains how mathematicians 

have pulled back the curtain to reveal the complexities 

of the natural world—and of our very selves.  

(continued on back fl ap)

(continued from front fl ap)

“Stewart has a genius for explanation. . . . Mathematics doesn’t come more entertaining than this.”

— N E W  S C I E N T I S T

“Stewart . . . combines a deep understanding of math with an engaging literary style.”

— T H E  WA S H I N G T O N  P O S T

“Ian Stewart is . . . possibly mathematics’ most energetic evangelist.”

— T H E  S P E C TA T O R  ( L O N D O N )

“Stewart is able to write about mathematics for general readers. He can make 

tricky ideas simple, and he can explain the math of it with aplomb. . . . Stewart 

admirably captures compelling and accessible mathematical ideas along with the

 pleasure of thinking about them. He writes with clarity and precision.”

— L O S  A N G E L E S  T I M E S

“Stewart is a highly gifted communicator, able not only to explain the motivation 

of mathematicians down the centuries but to elucidate the resulting mathematics with 

both clarity and style. The whole is leavened by his inimitable understated wit.”

— T H E  T I M E S  E D U C A T I O N  S U P P L E M E N T
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Preface

.................................

Mathematical theory and practice have always gone hand in hand,

from the time primitive humans scratched marks on bones to

record the phases of the Moon to the current search for the Higgs

boson using the Large Hadron Collider. Isaac Newton’s calculus

informed us about the heavens, and over the past three centuries its

successors have opened up the whole of mathematical physics:

heat, light, sound, fluid mechanics, and later relativity and

quantum theory. Mathematical thinking has become the central

paradigm of the physical sciences.

Until very recently, the life sciences were different. There,

mathematics was at best a servant. It was used to perform routine

calculations and to test the significance of statistical patterns in

data. It didn’t contribute much conceptual insight or

understanding. It didn’t inspire great theories or great experiments.

Most of the time, it might as well not have existed.

Today, this picture is changing. Modern discoveries in biology

have opened up a host of important questions, and many of them

are unlikely to be answered without significant mathematical input.

The variety of mathematical ideas now being used in the life

sciences is enormous, and the demands of biology are stimulating

the creation of entirely new mathematics, specifically aimed at

living processes. Today’s mathematicians and biologists are working

together on some of the most difficult scientific problems that the

human race has ever tackled – including the nature and origin of

life itself.

Biology will be the great mathematical frontier of the twenty-

first century.

Mathematics of Life celebrates the rich variety of connections

between mathematics and biology that already exist, from the

Human Genome Project, through the structure of viruses and the

organisation of the cell, to the form and behaviour of entire
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organisms and their interaction in the global ecosystem. It will also

show how mathematics can shed new light on difficult issues

concerning evolution, where many important processes take too

long to observe, or happened hundreds of millions of years ago and

have left only cryptic traces.

Initially, biology was about plants and animals. Then it was

about cells. Now it is mostly about complex molecules. To reflect

these changes in scientific thinking about the enigma of life, the

book starts from the everyday human level, and follows the

historical path that led biologists to focus ever more sharply on the

microscopic structure of living creatures, culminating in DNA, the

‘molecule of life’.

Most of the material discussed in the first third of the book is

therefore about biology. However, mathematics makes an early

appearance, tracing questions about the geometry of plants from

Victorian times to the present day, to illustrate how new

mathematical ideas have been motivated by biology. Once the

biological background has been established, mathematics comes to

centre stage as we build up from the atomic scale, back to the level

with which we feel most comfortable, the one on which we all live.

The world of grass, trees, sheep, cows, cats, dogs . . . and people.

The mathematics involved is far-ranging: probability, dynamics,

chaos theory, symmetry, networks, mechanics, elasticity – even

knot theory. Most of the applications discussed here are to

mainstream mathematical biology: the structure and function of

the complex molecules that co-ordinate the complex processes of

life, the shapes of viruses, the evolutionary games that led to the

huge diversity of life on this planet and are still happening today,

the workings of the nervous system and the brain, the dynamics of

ecosystems. I’ve also included chapters on the nature of life and the

possible existence of alien life forms.

The interaction between mathematics and biology is one of the

hottest areas of science. It has already come a long way in a very

short time. Only the future will show just how far it can go. But

one thing I guarantee: it’s going to be an exciting ride.

Ian Stewart

Coventry, September 2010
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1 Mathematics and Biology
.................................

Biology used to be about plants, animals and insects, but five great

revolutions have changed the way scientists think about life.

A sixth is on its way.

The first five revolutions were the invention of the microscope,

the systematic classification of the planet’s living creatures, the

theory of evolution, the discovery of the gene, and the discovery of

the structure of DNA. Let’s look at them in turn, before moving on

to my sixth, more contentious, revolution.

...............
The Microscope

The first biological revolution happened 300 years ago, when the

invention of the microscope opened our eyes to the astonishing

complexity of life on the smallest scales. More precisely, it opened

up the complexity of life to observation by our eyes, by providing a

new instrument to augment our unaided senses.

The invention of the microscope led to the discovery that

individual organisms have an amazing internal complexity. One of

the first big surprises was that living creatures are made from cells –

tiny bags of chemicals enclosed in a membrane that lets some of

the chemicals pass in or out. Some organisms consist of a single

cell, but even those are surprisingly complicated, because a cell is

an entire chemical system, not something simple and

straightforward. Many organisms are made from a gigantic number

of cells: your body contains roughly 75 trillion of them. Each cell is

a tiny biological machine with its own genetic machinery which

Profile Books - Maths of Life Data Standards Ltd, Frome, Somerset – 10/2/2011 01 Maths of life Chapters.3d Page 1 of 336



can cause it to reproduce, or die. Cells come in more than 200 types

– muscle cells, nerve cells, blood cells, and so on.

Cells were discovered very soon after microscopes were

invented: once you can look at an organism under high

magnification, you can’t miss them.

...............
Classification

The second revlution was started by Carl Linnaeus, a Swedish

botanist, doctor and zoologist. In 1735, his epic work Systema

Naturae appeared. Its full title in English is ‘The system of nature

through the three kingdoms of nature, according to classes, orders,

genera and species, with characters, differences, synonyms, places’.

Linnaeus was so interested in the natural world that he decided it

needed to be catalogued. All of it. The first edition of his catalogue

was just 11 pages long; the 13th and last ran to 3,000 pages.

Linnaeus made it clear that he was not trying to uncover some kind

of hidden natural order; he was just trying to organise what was

there, in a systematic and structured manner. His chosen structure

was to classify natural objects in a five-stage subdivision: kingdom,

class, order, genus, species. His three kingdoms were animals, plants

and minerals. He founded the science of taxonomy: the

classification of living creatures into related groups.

Minerals are no longer classified along Linnaean lines, and the

details of his system have been modified for plants and animals.

Recently several alternative systems have been advocated, but none

has yet been widely adopted. Linnaeus appreciated that a systematic

classification of living things is vital to science, and he put that idea

into practice. He made the occasional mistake: initially he classified

whales as fish. But by the 10th edition of Systema Naturae,

published in 1758, an ichthyologist friend had put him right, and

whales were mammals.

The best-known and most useful feature of the Linnaean system

is the use of double-barrelled names such as Homo sapiens, Felis

catus, Turdus merula and Quercus robur – species of human, cat,

blackbird and an oak tree.1 The importance of classification is not

just to make a list, or to introduce fancy Latinised names to show

how clever you are, but to make logical, clear-cut distinctions

among the many creatures that exist. Common names, such as
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‘blackbird’, don’t do the trick: do you mean the common blackbird,

the grey-winged blackbird, the Indian blackbird, the Tibetan

blackbird, the white-collared blackbird, or one of the 26 species of

New World blackbird? But the Linnaean Turdus merula refers

uniquely to the common blackbird, and there’s no chance of

confusion.

...............
Evolution

The third revolution had been simmering for some time, but it

boiled over in 1859 when Darwin published The Origin of Species.

The book eventually ran to six editions, and it ranks as one of the

truly great scientific works of all time, bearing comparison with the

works of Galileo, Copernicus, Newton and Einstein in the physical

sciences. In the Origin, Darwin proposed a new vision of the source

of life’s diversity.

The prevailing belief in his day, among scientists as much as lay

folk, was that each separate species had been created individually

by God as part of the overall act of creating the universe. In this

view, species could not change over time: a sheep was, is and

always will be a sheep; a dog was, is and always will be a dog. But

as Darwin contemplated the scientific evidence, much of which he

had amassed on his own travels, he found this comfortable picture

becoming less and less tenable.

Pigeon fanciers knew that deliberate breeding could produce

wildly different types of pigeon. The same went for cows, dogs and

indeed all domesticated animals. Now, that mechanism for change

required human intervention. The animals didn’t change ‘of their

own accord’: they had to be chosen – selected – with great care, by

someone following a plan. But Darwin realised that unaided nature

could, in principle, produce similar changes through competition

for resources. When times were hard, those animals that were better

able to survive would be the ones that lived long enough to

produce the next generation, and this new generation would be

slightly better adapted to the environment.

Such changes, Darwin felt, would be much more gradual than

those imposed by human breeders, but a changing environment

could, over a long period of time, cause some of the organisms in a

species to develop markedly different forms and habits. He saw this
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process as the slow accumulation of myriad tiny changes. His

background in geology made him acutely aware that the planet had

been around for vast aeons of time, so lack of time was not a

problem. Even extraordinarily slow changes could eventually

become very significant.

He called this process ‘natural selection’. Today we call it

‘evolution’, a word that Darwin didn’t use – although the final

word in The Origin of Species is ‘evolved’. The evidence in favour of

evolution is so extensive, and comes from so many independent

sources, that biology now makes no sense without it. Today, almost

all biologists (and most scientists, whatever their field of research)

find the evidence that evolution has been the dominant

mechanism behind the diversity of today’s species to be

overwhelming. But how evolution works is another matter entirely,

and much remains to be understood.

...............
Genetics

The fourth revolution was Gregor Mendel’s discovery of genes,

which was published in 1865 but not appreciated for another fifty

years.

Observable features of organisms, such as colour, size, texture

and shape, are known as characters (or characteristics or traits).

Darwin had no idea how characters were transmitted from parent to

offspring, though several distinct lines of reasoning led him to infer

that this must happen. In fact, the transmission mechanism was

already under investigation when he wrote the Origin, but he didn’t

know that. It would have had a major impact on his thinking.

For seven years around 1860, the Austrian priest Gregor Mendel

bred pea plants – 29,000 of them – and counted how many

displayed particular characters in each generation. Did they produce

yellow or green peas? Were the peas smooth or wrinkly? Mendel’s

observations turned up some curious mathematical patterns, and he

became convinced that inside every living organism there are

‘factors’, now called genes, that somehow determine many features

of the organism itself. These factors are inherited from previous

generations, and in sexual species they arise in pairs: one from the

‘father’ (the male organ of the plant) and one from the ‘mother’

(the female organ). Each factor can occur in several distinct forms.
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The random mixing of these ‘alleles’ – genetic alternatives – creates

the patterns in the numbers.

Initially, the physical form of Mendel’s factors was a complete

mystery; their existence was inferred indirectly from the

mathematical patterns – the proportions of plants in successive

generations that possessed particular combinations of features.

...............
The structure of DNA

Revolution number five was more straightforward, and like the first,

it was triggered by the invention of a new experimental technique.

This time the technique was X-ray diffraction, which allows

biochemists to work out the structure of complex, biologically

important molecules. In effect, it provides a ‘microscope’ that can

reveal the positions of individual atoms in a molecule.

In the 1950s Francis Crick and James Watson began to think

about the structure of a complex molecule found almost universally

in living creatures: deoxyribose nucleic acid, known universally by

its initials, DNA. Crick, who was British, had trained as a physicist,

but became terminally bored while writing a PhD on how to

measure the viscosity of water at high temperatures, and in 1947 he

moved into biochemistry. Watson was an American whose first

degree was in zoology; he became interested in a type of virus that

infects bacteria, known as a bacteriophage (‘bacterium-eater’). His

big project was to understand the physical nature of the gene – its

molecular structure.

At that time, it was known that genes resided in regions of the

cell called chromosomes, and that the main constituents of genes

were proteins and DNA. The conventional wisdom among biologists

was that organisms could reproduce because the genes were

proteins, capable of copying themselves. DNA, in contrast, was

widely considered to be a ‘stupid tetranucleotide’ whose sole

function was to act as scaffolding, so that the proteins could be

held together.

However, there was already some evidence that DNA is the

molecule from which genes are formed, which immediately raised a

crucial question: what does the DNA molecule look like? How are

its component atoms arranged?

Watson ended up working with Crick. They based their analysis
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of DNA on some crucial X-ray diffraction experiments carried out

by others (notably Maurice Wilkins and Rosalind Franklin), homed

in on a few key facts, and started building models in the literal

sense, by fitting together pieces of card or metal shaped like simple

molecules that were known to be part of DNA. This exercise led

them to propose the now-famous double helix structure: DNA is

two-stranded, like two intertwined spiral staircases. Each strand

(staircase) carries a series of bases, which are four different

molecules: adenine (A), cytosine (C), guanine (G) and thymine (T).

These come in linked pairs: an A on one strand is always joined to a

T on the other; a C on one strand is always joined to a G on the

other.

Crick and Watson published their proposal in the scientific

journal Nature in 1953. It begins: ‘We wish to suggest a structure for

the salt of deoxyribose nucleic acid (D.N.A.). This structure has

novel features which are of considerable biological interest.’ Near

the end, they write: ‘It has not escaped our notice that the specific

pairing we have postulated [A with T, C with G] immediately

suggests a possible copying mechanism for the genetic material.’2

The basic idea here is simple: the sequence of bases on just one

of the two strands determines the entire structure. On the other

strand, the sequence is given by the complementary bases to those

on the first strand – swap A and T, and swap C and G. If you could

pull DNA apart into its two strands, each of them would contain

the necessary ‘information’ to reconstruct the other. So all you have

to do is make two complementary strands, and fit the pairs back

together to get two perfect copies of the original.

Crick and Watson’s suggestion for the structure of DNA, based

on little more than some crucial hints from experiment and a lot of

fiddling with models, turned out to be correct. So did the copying

mechanism, which was so speculative that they did not spell it out

in the Nature paper in case it turned out to be wrong. However, you

can’t just pull two intertwined helices apart, so some quite

complicated mechanisms are needed to achieve this duplication.

What they were lay far in the future.

At a stroke, attention in biology turned to the molecular

structure of key substances: DNA, proteins and associated

molecules. University biology departments fired or retired botanists,

zoologists and taxonomists – anyone who actually worked with

entire animals was completely out of date. Molecules were the

Profile Books - Maths of Life Data Standards Ltd, Frome, Somerset – 10/2/2011 01 Maths of life Chapters.3d Page 6 of 336

6 // Mathematics of Life



coming thing. And they were, and they did. And biology has never

been the same since. Crick and Watson had found ‘the secret of

life’, as Crick bragged in the Eagle (a pub in Benet Street,

Cambridge) a few days before they found the correct structure.

Many major new developments have followed from Crick and

Watson’s breakthrough. The science behind them is often highly

innovative, but the point of view has changed only incrementally

from what it was in Crick and Watson’s day, so these more recent

scientific advances, dramatic though they may be, do not constitute

genuine revolutions. For example, in 2006 the Human Genome

Project succeeded in listing the entire genetic sequence of a human

being – three billion units of genetic information.3 This has

revolutionary implications: for one thing, it opens up entirely new

advances in medicine. Biology has become the most exciting

scientific frontier of the twenty-first century, promising huge

advances in medicine and agriculture, as well as a deep

understanding of the nature of life itself. But there is a clear path

linking all of this to the original discovery of the structure of DNA.

............
These, then, are my five revolutions.

The gaps between them, allowing (in Mendel’s case) for the time

it took before anyone noticed, are roughly 50, 100, 50 and 50 years.

The fifth happened just over 50 years ago. The pace of change in

the world is accelerating, so a sixth revolution in biology seems

overdue. I believe that it has already arrived. The nature of life is

not just a question for biochemistry – many other areas of science

have major roles in explaining what makes living creatures live.

What unites them all, opening up entirely new vistas, is my sixth

biological revolution: mathematics.

............
Mathematics has been with us for thousands of years; the ancient

Babylonians could solve quadratic equations 4,000 years ago.

Biologists have been using mathematical techniques, especially

statistics, for more than a century. So it might seem unreasonable

to refer to a ‘revolution’. But what I have in mind – what is

happening as I write – goes much further. The mathematical way of
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thinking is becoming a standard piece of kit in the biological

toolbox: not just a way to analyse data about living creatures, but a

method for understanding them.

What mathematics is, and how useful it is, are widely

misunderstood. It is not solely about numbers, ‘doing sums’ as we

were taught in school – that’s arithmetic. Even when you add in

algebra, trigonometry, geometry and various more modern topics

such as matrices, what we learn at school is a tiny, limited part of a

vast enterprise. To call it one-tenth of one per cent would be

generous. And the mathematics we learn at school is in many ways

unrepresentative of the whole, just as playing scales on a piano falls

short of being real music, and woefully short of composing music.

People often think that mathematics was all invented (or

discovered) long ago, but new mathematics is coming into being at

an impressive rate. A million pages a year is a conservative estimate,

and that’s a million pages of new ideas, not just variations on

routine calculations.

Numbers are basic to mathematics, just as scales are basic to

music, but the subject matter of mathematics is much broader:

shapes, logic, processes . . . anything that has structure or pattern.

We can also include uncertainty, which might seem to be the

absence of pattern, but the early statisticians discovered that even

random events have their own patterns, on average and in the long

run. One of the remarkable features of the mathematics now being

used in biology is its variety; another is its novelty. Much of it is

less than 50 years old and some of it was invented last week. It

ranges from knot theory to game theory, from differential equations

to symmetry groups. A lot of it uses ideas that most of us have

never encountered, and probably wouldn’t recognise as

mathematics if we did. It is changing how we think about biology,

not just the results we obtain.

This approach is old hat in the physical sciences, which rely

heavily on mathematics; in fact, the development of those two

areas has gone hand in hand for thousands of years. Until recently,

biology was – or seemed – different. Traditionally, biology was the

branch of science recommended to students who preferred to avoid

mathematics if at all possible. You can study the life cycle of a

butterfly without doing any sums. There are still no fundamental

mathematical equations for biology, equivalents of Newton’s law of

gravitation. We don’t calculate the evolutionary trajectory of a fish
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by applying Darwin’s equations. But there is mathematics aplenty

in today’s biology, and it is becoming ever harder to avoid it. It just

doesn’t mimic the way mathematics is used in physics. It’s

different, it has its own special quality. And increasingly, much of it

is motivated by the needs of biologists, which are no longer as cosy

as watching butterflies.

The application of mathematics to biology depends on new

apparatus, most obviously the computer. It also depends on new

mental apparatus: mathematical techniques, some specially tailored

to the needs of biology, others that arose for different reasons but

turn out to have important biological implications. Mathematics

provides a new point of view, addressing not just the ingredients for

life, but the processes that use those ingredients.

I believe that the sixth revolution in biology is already under

way, and it is to apply mathematical insight to biological processes.

My aim here is to show how the techniques and viewpoints of

mathematics are helping us to understand not just what life is

made from, but how it works, on every scale from molecules to the

entire planet – and possibly beyond.

............
Until recently, most biologists doubted that mathematics would

ever have much to tell us about life. Living creatures seemed too

versatile, too flexible, to conform to any rigid mathematical

formalism (hence the Harvard law of animal behaviour:

‘experimental animals, under carefully controlled laboratory

conditions, do what they damned well please’). Mathematical tools

such as statistics had their place, of course, but mathematics was

purely a servant, unlikely to have a significant effect on mainstream

biological thinking. Mavericks such as D’Arcy Wentworth

Thompson, whose book On Growth and Form catalogued numerous

mathematical patterns – or alleged patterns – in living creatures,

were ignored or dismissed. They were at best a sideshow, at worst,

nonsense. After all, Thompson’s book was first published in 1917,

forty years before the structure of DNA became known, and he said

very little about evolution, except to criticise what he saw as a

tendency to fit the story to whatever facts happened to be available.

More recent critics of a narrow molecular view of biology, such as

the American evolutionary biologist Richard Lewontin, also got
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short shrift from mainstream biology. The genome was considered

to be ‘the information needed to specify an organism’, and it was

pretty obvious that once we knew that, then in principle we would

know everything.

However, as biologists overcame the huge difficulties involved

in deriving genetic sequences, and in working out the functions of

genes and proteins – what they actually did in the organism – the

true depths of the problem of life became ever more apparent.

Listing the proteins that make up a cat does not tell us everything

we want to know about cats. It doesn’t tell us everything even for

more lowly creatures such as bacteria.

There is no question that a creature’s genome is fundamental to

its form and behaviour, but the ‘information’ in the genome no

more tells us everything about the creature than a list of

components tells us how to build furniture from a flat-pack. In fact,

the gulf between a living creature and its genome is far wider than

that between furniture and a list of boards, screws and washers. For

example, over the past few years it has also become clear that

‘epigenetic’ information, not written in DNA, and possibly not

‘coded’ in any obvious symbolic fashion, is also vital to life on

Earth. Most of us who have assembled flat-packs have also required

knowledge that is not included in the instructions.

Lists of ingredients are not enough to understand biology,

because what really matters is how those ingredients are used – the

processes that they undergo in a living creature. And the best tool

we possess for finding out what processes do is mathematics. Over

the past half-century or so, new mathematical discoveries have

opened up a realm of rich and surprising behaviour, revealing that

apparently simple processes can do astonishingly complex things.

As a result, the belief that mathematics is too simple and too well

behaved to provide insights into the complexity of living creatures

has become very difficult to defend. Instead, attention has been

focused on finding ways to exploit the power of mathematics to

provide genuine insights into biology.

Some of these developments use mathematics as a tool to help

with the scientific techniques that biologists use. Such applications

have been around ever since physicists developed the science of

optics and manufacturers used it to improve the design of

microscopes. An example today is ‘bioinformatics’, the methods

involved in the storage and manipulation of gigantic data sets in
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computers. Listing a genome is not enough: you have to be able to

find what you’re looking for in the list, compare it with other items

of information on other lists, and so on. When the list contains

three billion items of information (and that’s just the code, let

alone everything we know about what it does), that’s a non-trivial

issue. Most computer technology relies on a heavy dose of hidden

mathematics, and bioinformatics is no exception.

That’s worthy, useful, necessary . . . but not, in the present

context, inspiring. The role of mathematics ought to be more

creative. And so it is. Mathematics is being used not just to help

biologists manage their data, or improve their instruments, but on a

deeper level: to provide significant insights into the science itself, to

help explain how life works. Over the past ten years there has been

a massive growth in ‘biomathematics’ – mathematical biology. All

around the globe new research institutes and centres devoted to

this subject have sprung into existence, to such an extent that the

people setting them up are having difficulty in finding enough

qualified staff. Though still not a part of the biological mainstream,

biomathematics is claiming its rightful place among the host of

techniques and points of view that are necessary if we are to

understand how life evolved, how it works and how organisms

relate to their environment.

Ten or twenty years ago, the claim that mathematics could play

a significant role in biology largely fell on deaf ears. Today, that

particular battle is mostly won – as the rapid growth of specialist

research centres demonstrates. It is no longer necessary to try to

persuade biologists that mathematics might be useful to them.

Many of them still have no wish to use it themselves, except when

it has been neatly packaged into computer software, but they do

not object if others do. A mathematician can be a useful addition to

the research team. A few biologists still resist the importation of

mathematics into their subject and would robustly deny most of

what I’ve just written, but that’s fast becoming an outmoded reflex,

and their influence is dwindling.

By the same token, mathematicians have learned that the only

effective way to apply their subject to biology is to find out what

biologists want to know, and to adapt their techniques accordingly.

Biomathematics is not merely a new application for existing

mathematical methods. You can’t just pull an established

mathematical technique off the shelf and put it to use: it has to be
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tailored to fit the question. Biology requires – indeed demands –

entirely new mathematical concepts and techniques, and it raises

new and fascinating problems for mathematical research.

If the main driving force behind new mathematics in the

twentieth century was the physical sciences, in the twenty-first

century it will be the life sciences. As a mathematician, I find this

prospect exciting and enticing. Mathematicians like nothing better

than a rich source of new questions. Biologists, rightly, will be

impressed only by the answers.
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2 Creatures Small and Smaller
.................................

If human eyesight had been better, we might never have

experienced the first revolution, when we noticed the hidden

wonders of life. Our poor eyesight inspired a simple piece of

technology – the lens. Unexpectedly, this practical aid to our

everyday activities spun off two types of scientific instrument: the

telescope and the microscope. These opened up the vast reaches of

the cosmos and the intricate small-scale world of living creatures.

Unaided, the human eye sees the world on a human scale:

people, houses, animals, plants, rocks, rivers, cups, knives . . . Even

the larger features of our environment – mountains, lakes – we

perceive as monolithic objects. From a distance, a mountain looks

much like a rock, one that comes to a point at the top. By the time

we are close enough to see how much more there is to a mountain,

we have lost sight of the mountain. Instead, we see a complex

arrangement of streams, scattered rocks, moss, precipices, ravines,

snow and ice.

The word ‘grasp’ gives away the whole game. On a human scale,

the world consists of what we can pick up with our hands. On this

level, the Moon, a cow and a flea seem to be on a par with one

another. Agreed, we can’t grasp the Moon, but we can cover it with

a thumb held at arm’s length. We can’t pick up a cow, but we can

put a ring through its nose and lead it on a rope. (I use ‘we’ in the

time-honoured sense of ‘some of us can’.) The main problem in

grasping a flea, ironically, is that it’s too small to offer a good grip –

and it jumps. But broadly speaking, on a human scale all objects are

on much the same footing. We give them a name, and we imagine

that by naming them we have captured their essence. The Moon is
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a shining, mottled disc. A cow walks on four legs and gives milk. A

flea bites, jumps and is a nuisance.

As soon as we progress beyond the unaided human eye, with

little more than a polished lump of glass to assist us, our simple,

comfortable picture of the world changes. Through his telescope

Galileo saw spots on the Sun, mountains on the Moon, phases of

Venus, and four tiny specks of light passing to and fro across the

orange disc of the planet Jupiter. He deduced – could scarcely fail to

deduce, as soon as he put his mind to it – that the Sun and Moon

are not unblemished spheres, Venus revolves around the Sun, and

the Earth is not a fixed centre around which the rest of the universe

revolves.

The religious authorities of the time, who considered themselves

to be custodians of the truth, were aghast. Galileo managed to

escape the horrific penalties that were often employed to enforce

the official view of truth, but at his trial for heresy in 1633 he was

forced to deny his own deductions from the evidence that he had

seen through his telescope. The authorities of the day did not

dispute the evidence. They simply told Galileo to ignore it, and

stop writing about it. I’m inclined to believe that they acted like

this not because they were religious, but because they were

authorities.

So Galileo recanted, though allegedly muttering under his

breath ‘even so, it moves’. And the Earth continued to move round

the Sun, whatever the Church believed and whatever Galileo was

publicly obliged to assert. The scientific evidence eventually

prevailed, but by the time Pope John Paul II apologised for how

Galileo had been treated, science had put men on the Moon.

If a humble telescope could cause such ructions, merely by

revealing things that were there, what about the microscope? That

opened up the internal world of very small things – in particular,

living creatures. The potential for heretical ideas was far greater

than anything that astronomy could inspire. Yet curiously, the

religious authorities viewed this even more revolutionary

development with apparent equanimity, even though the new

evidence now made available to the human eye would totally

change our ideas about the world and our place in it. I suspect that

the authorities simply didn’t grasp the microscope’s potential. The

wonders it revealed did not, initially, appear to conflict with

scripture. The Church, taking a positive religious message, believed
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the microscope was merely showing us the hidden marvels of God’s

creation. A pity they didn’t think the same about Galileo.

In fact, the microscope was far from innocuous. It quickly

revealed that our world is not what it seems. It does not function

solely on the human level, it was not made for humans; everything

that humans had been taking for granted about plants and animals

was up for grabs, and most of it was wrong. Even those things, like

cats and cows and trees, that do seem to function on a human level

. . . don’t.

On the human level, a cow seems simple. You feed it grass, and

it pays you back with milk. It’s a trick whose secret is limited to

cows and a few other mammals (most can’t digest grass). You don’t

need to understand the details to exploit the process: it’s a

straightforward transformation from grass into milk, more like

chemistry – or alchemy – than biology. It is, in its way, magic, but

it’s rational magic that works reliably. All you need is some grass, a

cow and several generations of practical knowhow.

Seen through a microscope, though, it all gets more

complicated. And the closer you look, the more complicated it gets.

Milk is not a single substance, but a mixture of many. Grass is so

complex that we still don’t fully understand it. A cow’s complexity

is even greater. In particular, a cow (plus a bull) can make a new

generation of baby cows. This is a simple thing on a human level,

but inexpressibly complex on a microscopic level.

............
Nearly three thousand years ago, the ancient Egyptians knew that a

glass lens can make an object look bigger. Seneca, who tutored the

Roman Emperor Nero, noticed that it is easier to read someone’s

writing if you look through a glass globe filled with water. Nero

himself is said to have looked through an emerald to watch his

gladiators fighting in the arena. By the ninth century, people were

using ‘reading stones’ to assist their failing eyesight. These were

polished lumps of clear glass, rounded on one side and flat on the

other; you sat them on top of the document you were trying to

read and looked through them. By the twelfth century, the Chinese

had discovered that slices of smoky quartz can protect your eyes

from the sun.

No one knows exactly when, where or by whom the first true
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spectacles – a pair of lenses that you perch on your nose – were

invented. One contender is Salvino D’Armati, who lived in Florence

and may have invented spectacles around 1284. Another is a

Dominican monk, Alessandro Spina, from Pisa. A third is Roger

Bacon, whose 1235 (or earlier) book about the rainbow mentions

using optical devices to read small letters from a distance. However,

we have no idea what sort of device he had in mind. It may have

been just a single crude lens.

Whoever should be given the credit, the first true spectacles

were almost certainly invented in Italy between 1280 and 1300.

They acted like a magnifying glass and corrected long-sightedness;

it would be another 300 years before lenses able to correct short-

sightedness were developed, in part because these are much harder

to make. Johannes Kepler (astronomer, astrologer and

mathematician) was the first to explain how convex and concave

lenses corrected eyesight. Spectacles work better if the lenses are

made from clear glass, without too many bubbles or impurities, and

the precise shape of the lens is crucial. Lenses were (and still are)

made by grinding glass using various types of abrasive material,

which in Kepler’s time were already being used by jewellers. So lens

technology developed alongside other improvements.

In 1590 a Dutch spectacle manufacturer, Zaccharias Janssen,

assisted by his son Hans, put several lenses inside a tube. When

they looked through the tube, it made everything appear larger and

nearer. This discovery led to two of the most important scientific

instruments ever invented: the telescope and the microscope. The

telescope brought the large, distant structures of the cosmos down

to a human scale. The microscope did the exact opposite: it took

the diminutive structures of Earthly objects, especially living

creatures, and brought them up to the human scale.

By 1609 Galileo had improved these early telescopes, and

through his still rather crude instruments he made discoveries that

persuaded him that the Earth was not the centre of the universe.

Within a century, astronomy had become a thriving area of science,

and the secrets of the heavens, especially the laws of gravity, were

there for the taking.

The telescope opened up astronomy because it made it possible

for the human eye to see enormously distant, enormously large

objects, such as planets. It took the exact opposite to open up

biology: a device that allowed the human eye to see incredibly tiny
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objects that were right in front of people’s noses. By a happy

accident, the same basic technology – lenses – did this job too. The

resulting device even has a similar name: the microscope.

The invention of the microscope had a very different effect from

that of the telescope. It led to great strides in biology, but instead of

clarifying the issues, many of those strides made things seem even

more mysterious and miraculous. Instead of opening up the world

of living creatures to human understanding, the microscope just

made the puzzles seem even more difficult. Through even a low-

powered microscope, little more than a single crude lens, living

creatures took on new significance. And they were very, very

complex.

So, while the telescope revealed deep simplicities in the cosmos,

the microscope revealed previously unseen complexities in life. The

same dichotomy between the simple and the complex has

bedevilled the biological sciences ever since. Biologists, with some

justification, argue that the life sciences are fundamentally harder

than the physical sciences.

............
A key figure in the development of the microscope was the Dutch

tradesman and scientist Anton van Leeuwenhoek. He developed a

way to make small, high-quality spheres of glass, and used them as

lenses. Although a sphere is not the ideal shape for a lens, the

quality of the glass compensated for the poor geometry, and van

Leeuwenhoek’s microscopes were surprisingly powerful. Using this

new device, he became the first person to observe bacteria, yeast

and microscopic creatures that dwelt in ponds. Under one of his

microscopes, a drop of pondwater teemed with as much life as the

Serengeti plain. He also discovered that blood was made from tiny

disc-shaped objects, which flowed round the body in tiny tubes,

capillaries.

Starting in 1673, van Leeuwenhoek published his discoveries in

the Philosophical Transactions, a journal of the Royal Society in

London. At first his work attracted favourable comment, but after

three years he began to make claims that most scientists of the day

found absurd: the discovery of ‘animalcules’. These creatures, he

said, flourished inside a single drop of water. The idea that there

might exist living organisms so small that they were invisible to the
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naked eye seemed ludicrous, and at first van Leeuwenhoek’s claim

was met with derision.

The types of creature that van Leeuwenhoek discovered are

nowadays known as protists. The best known protist must be ‘the’

amoeba, thanks to school biology; actually there are innumerable

species of amoeba, some of which even have shells. So ‘amoeba’ has

become a generic term for all such creatures (the technical term is

‘amoeboid’). Amoebas were discovered in 1757 by August von

Rosenhof, and initially they were referred to as ‘Proteus

animalcules’, after the Greek god famed for his ability to change

shape. The amoeba with the scientific name Amoeba proteus is the

most familiar, mainly because it is also one of the largest, and so

can easily be seen under a low-powered microscope (see Figure 1).

Fig 1 Left to right: amoeba, Paramecium, Volvox.

When so viewed, this particular amoeba appears as an

irregularly shaped blob with several protrusions, like rudimentary

tentacles, with a rather rounded shape. The outside of the creature

is some sort of membrane, forming a flexible bag; the inside is a

mixture of various granules, and a few holes, which flow with

apparent purpose, like a thick jelly dotted with grains of sand that

seem to know where they want to go. One rounded feature, dotted

with even smaller particles, stands out: this is the nucleus. An

amoeba can move and ingest food, and thanks to its nucleus it can

even reproduce – its famous ability to ‘multiply by division’. Under

the right conditions the nucleus orchestrates a complex sequence of

events that cause one amoeba to split into two. These in turn can

grow, and divide again, so the amoeba’s lineage can flourish.

One of my favourite cartoons shows the archetypal Noah’s Ark,

propped up by wooden scaffolding, the rain bucketing down. The

last few pairs of animals are making their way up the gangplank

into the ark, wet and miserable. Noah is grubbing around in the

mud at the foot of the gangplank, desperately looking for
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something. Mrs Noah is leaning over the side of the ark, shouting:

‘Noah! Forget the other amoeba!’

Van Leeuwenhoek also saw Paramecium, a slipper-shaped

organism covered in tiny whip-like protrusions known as cilia

(plural of cilium). These undergo wave-like motions and move the

animal around. Paramecium also has a surrounding membrane.

There is a mouth-like groove at one end and an anal pore at the

other. It also has a relatively large nucleus, now called a

macronucleus because genetically it resembles a large number of

distinct nuclei that have merged into a single body.

A third common inhabitant of water-drops is a plant: Volvox. A

mature Volvox is a colony of single-celled algae, and each cell

propels itself with a flagellum, a tail-like object which appears to

wiggle from side to side. These colonies, which can number up to

50,000 individuals, are contained in a larger (though still

microscopic) sphere made from a gelatinous protein. They are

bright green because they contain chlorophyll, the substance that

gives plants their green colour and, more crucially, allows them to

turn sunlight into chemical energy.

All this, and much more, inside one drop of water? It was

scarcely credible. The luminaries of the Royal Society found it

wildly unlikely, but after a further four years people started looking

for themselves instead of denouncing the idea as absurd. Van

Leeuwenhoek was vindicated, and soon he was elected a Fellow of

the Society.

He made a number of fundamental discoveries using his

microscopes, but ultimately his most important works were the

microscopes themselves, because other people could use them to

make their own discoveries. Van Leeuwenhoek manufactured more

than 500 lenses and built 400 different microscopes. The best of the

nine surviving models magnifies objects up to 275 times, and some

of his models may have been capable of 500-fold magnification.

This is five times more than a standard modern laboratory optical

microscope. Of course, today’s microscopes are manufactured with

greater precision, and include all sorts of extras, and much higher

magnification is available if you really need it. But you can do a lot

of biology with one of Van Leeuwenhoek’s microscopes.

Van Leeuwenhoek was a Calvinist, and considered his

discoveries to be evidence of the hidden wonders of God’s creation.

On a scientific level he disproved the prevailing belief that
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microscopic organisms were ‘spontaneously generated’ – arose from

non-living materials of their own accord – by showing that, just like

larger living creatures, they reproduced. It is ironic that the

telescope, with which Galileo revealed new things about the distant

cosmos, raised so many religious hackles, but the microscope,

which opened up entirely new visions of life on this planet, was

accepted without a qualm.

It was not to last, of course. But the deep religious and

emotional divisions that would be triggered by Darwin and his

successors lay 200 years in the future.

............
Microscopy really began to take off, and biology with it, when

Robert Hooke joined the fray. Hooke was an English polymath and

natural philosopher – the term used in those days for ‘scientist’ –

and he took up where Van Leeuwenhoek left off. He was in many

ways the true father of microscopy. He was into everything, and he

possessed immense energy. When Hooke embarked on a new

project, the sparks flew.

Hooke was responsible for one of the iconic biological drawings,

one that made a very clear point about the complexities of minute

organisms. In his lavishly illustrated Micrographia of 1665 he

presented observations that he had made with both microscope and

telescope. One of the engravings shows what a flea looks like

through a modestly powered microscope (see Figure 2). All his

contemporaries were familiar with fleas, indeed on intimate terms

with them, but to most people these irritating little beasts were just

dark specks that jumped a lot and sucked blood. Hooke revealed

how complex a flea really is. It looks like a diminutive armoured

machine. It has long legs, which allow it to jump, and the legs are

hairy. Its mouth parts, which suck the blood, are surprisingly

complicated. Clearly there is more to a flea than just being a

nuisance.

Hooke was responsible for an even more iconic drawing, also in

the Micrographia. It showed a thin slice through an everyday

substance, cork (see Figure 3). Cork is the bark of a tree, and it is

strong and light. These two properties stem from its microscopic

structure: it consists of innumerable tiny chambers. Hooke called
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these chambers ‘cells’ because they reminded him of the rooms

inhabited by monks. Cells are the basic building blocks of life.

Some organisms, such as the amoeba, are individual cells.

Higher creatures, be they delphiniums, tigers or people, are huge

assemblies of cells. At first it looked as though the crucial

distinction between organisms was the number of cells they

contained: one, or more. Single-celled organisms were simpler than

many-celled ones. But when microscopists discovered how to see

the different bits and pieces that made up a cell, they realised that
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there was a more fundamental difference. Some single-celled

organisms – for instance, bacteria – were very different from other

single-celled organisms, such as the amoeba. Most many-celled

organisms belonged in the same category as some of the single-

celled organisms, and the others were not so much organisms as

colonies.

The fundamental distinction, in fact, is between prokaryotes

and eukaryotes – two of the three ‘domains’ into which life is now

classified. (The third domain is archaea, primitive single-celled

creatures that used to be grouped with prokaryotes.) Eukaryote cells

possess a nucleus; prokaryote cells don’t. Bacteria are prokaryotes;

amoebas and tigers are eukaryotes. Why so much fuss about the

nucleus? Because it affects how the cell reproduces. All cells

multiply by dividing: a single ‘mother’ cell splits, forming two

‘daughter’ cells. But prokaryotes do this in a much simpler manner

than eukaryotes.

............
When a cell divides, it splits into two pieces, each roughly half the

size. Each piece is a new cell, a sort of copy of the original, and if

necessary it can grow bigger. But reproduction must copy not just

the form of the cell but the genetic information hidden inside it,

because the genetics controls many of the processes that keep a cell

alive. The genes are collected together in regions of the cell known

as chromosomes, ‘coloured bodies’, a term that reflects their

discovery when parts of the cell were selectively stained using dyes.

When the cell divides, the chromosomes must somehow be copied,

with one copy going to each daughter cell. This copying process is

very different in prokaryotes and eukaryotes.

A prokaryote cell has a number of components (see Figure 4).

Most of them are enclosed in an envelope – a bag that holds vital

parts together. This has two layers: an outer cell wall and an inner

membrane. The envelope is fairly rigid, so it helps the cell to

maintain its shape. It is not totally impervious: some things are

allowed in, some are allowed out. Its job is to control what goes

each way. The outside is usually, but not always, decorated with

structures that aid movement (flagella, plural of flagellum) and

communication (pili, plural of pilus). A flagellum is a tail-like

protuberance which can spin, propelling the cell through the
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surrounding fluid medium. A pilus is a hair-like appendage, and

cells can link their pili together, providing a communication

channel between their interiors.

The region inside the cell envelope contains various special

components, among them ribosomes, which make proteins, and the

genetic material, which among other things specifies the structure

of those proteins. The genetic material, which we now know is

DNA, is almost always a long, closed loop, folded into a

complicated tangle and attached to the membrane. There may also

be free-floating loops of DNA, called plasmids. These permit

‘bacterial sex’, in which DNA is exchanged via the pili.

Eukaryote cells are more complex than prokaryotes, and usually

larger, 10–15 times as wide and enclosing a thousand times the

volume (see Figure 5). There is a cell membrane, but not always a

cell wall. In place of flagella and pili there may be cilia, which wave

from side to side, helping the cell to move. The most important

difference is the genetic material. In a eukaryote cell, most of this is

segregated inside a nucleus, which has its own membrane. It also

consists of DNA, but now this molecule consists of long strands,

not closed loops. The strands are organised by being wound round

bobbin-like molecules called histones, and each strand forms a

separate chromosome.

Eukaryote cells contain several other structures, known as

organelles (‘little organs’). Among them are ribosomes, which again

make proteins, and mitochondria (plural of mitochondrion), which
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manufacture a molecule called adenosine triphosphate (ATP), which

in turn generates the cell’s energy.

............
The ability of cells to move, when witnessed through a microscope,

seems almost miraculous. They seem to know where they’re going.

However, we know enough about cellular movement to penetrate

the apparent miracle and understand a little of what makes it tick.

It depends on an organelle that controls the cell’s shape; suitable

changes in shape result in movement. The shape is maintained and

changed using a kind of skeleton formed from long tubular

molecules. These tubes can grow or come to pieces as required, and

they are manufactured by another organelle, the centrosome.

The main agent of cellular movement is the cytoskeleton, a web

of protein scaffolding inside the cell. It is built in part from

microtubules – long, thin tubes made from a protein called tubulin.

Tubulin occurs in two very similar but distinct forms, alpha- and

beta-tubulin. The structure of a microtubule is like a chessboard

rolled into a tube: the ‘black’ squares are alpha-tubulin and the

white ones are beta-tubulin. Dynamically, this structure is unstable

– it is like a cylindrical brick chimney in which successive rows of

bricks fit precisely on top of one another instead of being staggered.

Why does nature make such an important item as a microtubule

in such an unstable way? Because the ‘cleavage lines’, where the

structure is weak, are useful. Microtubules can grow longer by
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adding another layer of protein bricks. But they can also shorten,

splitting apart at the seams like a banana being peeled. Experiments

show that they shorten about ten times as rapidly as they grow, and

mathematical models of the forces that act between molecules and

atoms support this observation. So the cell can go ‘fishing’ for

interesting things using tubulin rods, pushing them out at random

to see what they find, and collapsing them if they don’t find

anything. A cell moves by demolishing and rebuilding its own

skeleton. It all boils down to the dynamics of a tiny molecular

machine.

The construction and demolition of microtubules are controlled

by chemical signals, many of which have an environmental origin.

If the cell receives signals associated with food, it tears down its

scaffolding on the side opposite the food, builds more of it on the

side facing the food, and so inches its way foodwards.

Microtubules are produced by an organelle called the

centrosome, first described by Theodor Boveri and Edouard van

Beneden in 1887. When a cell divides, its chromosomes must

replicate, and this process centres around a structure called the

mitotic spindle. The chromosomes line up around the ‘equator’ of

the mitotic spindle and subsequently migrate to its ‘poles’. Through

their microscopes, Boveri and van Beneden spotted a tiny dot at

each pole of the mitotic spindle – a centrosome (see Figure 14,

p. 87). A single cell has one centrosome, close to its nucleus. When

the cell divides, the centrosome splits into two pieces which move

apart. The mitotic spindle forms between them. Then the

centrosomes pull the cell into two parts by extruding microtubules,

which they use as fishing rods to grab chromosomes and pull them

into the required positions using special chemical motors.

The centrosome consists of two identical molecular machines,

the centrioles. Each centriole is a bundle of twenty-seven

microtubules, arranged symmetrically in nine sets of three, glued

together with a slight twist. Two of these devices, arranged at right

angles to each other, are surrounded by a fuzzy cloud of

‘pericentriolar material’ from which sprout numerous tubulin

fishing-rods. This elegant molecular machine also organises the

production of new microtubules.

A combination of mathematical modelling and biochemistry

has recently revealed yet another role for tubulin in a cell. Small

molecules can diffuse through the cell unaided, but large,
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biologically important ones may not get to where they are needed if

left to their own devices. A protein molecule known as kinesin

‘walks’ along the tubulin rods on little molecular legs,1 carrying

vital molecules across the cell. So a cell is not just a bag of

chemicals – it is more like a highly automated factory.

............
In prokaryotes and single-celled eukaryotes, the organism is a cell,

so division of the cell constitutes reproduction of the organism. In

many-celled higher life forms, including all the animals and plants

familiar from everyday life and David Attenborough’s television

programmes, a lot more has to happen before the adult organism

reproduces. In sexual organisms – the majority – male cells divide

in a special way to produce sperm, and female cells similarly

produce eggs. (I will describe this briefly later, when we have more

background: both sperm and egg have half the normal amount of

genetic material found in a cell.) These two types of specialist ‘half-

cell’ are then brought together, the sperm fertilises the egg, and the

two together form one conventional cell.

Once fertilised, the egg undergoes a complicated but organised

pattern of development. In mammals, this takes it through a series of

stages – embryo, fetus – leading to the point at which it emerges

from its mother into the outside world. It then continues to

develop through its juvenile stage until it becomes an adult. It is

the same in birds and reptiles, except that for ‘mother’ you should

read ‘egg’. Other types of organism go through corresponding

changes: for example, a frog develops through the tadpole stage and

eventually turns into a miniature adult. Only at that point can the

original adult organism be said to have reproduced.

Development is perhaps the most complex part of biology,

because that is the stage at which we are forced to contemplate not

just some isolated part of a living creature, but the whole creature.

What we know about development is enormous, but what we don’t

know is far bigger. We know, in astonishing detail, how

innumerable organisms develop – dogs, cats, dogfish, catfish,

pigeons, spiders, marigolds, lizards, sea urchins, fruit flies, tiny

nematode worms . . . But we have far less understanding of the

processes that control development.

The gist of it seems to be that the fertilised egg divides
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repeatedly, providing an ever-increasing number of cells, and that

the organism’s genetic material somehow orchestrates the patterns

by which these cells grow, move, specialise to perform particular

tasks and even die. Often the way nature makes a complicated

structure involves using some cells as temporary scaffolding, and

killing them off when they are no longer needed.

The early stages of development are similar in most of the

higher animals; those of the frog are shown in Figure 6. The

fertilised egg divides repeatedly without any change in the total size

of all the cells, so the cells themselves become smaller and smaller.

This process is known as cleavage, and it leads to a blastula, a

hollow sphere of tiny cells. In many species this sphere is filled with

fluid or yolk, but in mammals it contains another mass of cells,

called the blastocyst.

Various layers of different cells appear; then a key step, known

as gastrulation, occurs, and the entire ball of cells folds in on itself

to create something more closely resembling a bag, or a tube with a

hole at one end. (I’ll describe a mathematical model of this process

at the end of Chapter 13, which takes the cellular structure into

account.) At this point the organism acquires an inside as well as an

outside – so to speak. The internal organs can now form.

Next, we observe the beginnings of the nervous system. Two

parallel ridges appear on the outside of the developing embryo,
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creating a groove between them; this is called the neural groove. It

closes up into a tube, the neural tube, which later develops into the

spinal cord and the nervous system. Another tube forms, which

later becomes the digestive system, from mouth via stomach and

intestines to anus. A rudimentary brain starts to appear . . . and so

on, and so on, and so on.

............
Biochemistry alone cannot explain the complex changes of form

that accompany development. We also have to take account of the

physical properties of cells, such as how sticky they are, how they

migrate from one region of the embryo to another, how new cells

are born and how existing cells die. The appearance of stickiness in

cells paved the way for the evolution of many-celled organisms;

without it, they’d fall apart.

Development includes the deliberate destruction of cells that are

employed as ‘scaffolding’ while some structure is forming, and are

then destroyed once it has been made. This process is known as

apoptosis, or programmed cell death. For example, an embryonic

chicken’s limbs develop from limb buds. At first the bud is just a

single, featureless rounded shape, but after a time it splits into

separate finger-like protrusions. This splitting is not just caused by

separate protuberances growing: in the regions between them, cells

die, much as a seamstress may make gloves by cutting away

material between the fingers rather than sewing separate finger-

shaped pieces of cloth together. Mathematical models have added

to our understanding of limb growth, the shape of flies’ wings, the

tentacles of the tiny Hydra, and many other developmental puzzles.

Development is not just about molecular structure: its most

important feature is shape. An organism cannot function effectively

if its organs, limbs and body are the wrong shape. Biologists have

learned a great deal about the changes that occur as an embryo

develops. In insects, for example, large-scale structures such as legs

and antennae develop from small regions of cells called imaginal

discs. Experiments show that the growth and movement of these

cells are controlled in part by specific genes, known as Hox genes. A

mutation in one of these genes can, for instance, cause an antenna

to form where a leg ought to be. Other genetic errors can create legs

where there ought to be antennae.
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Development involves an intricate interaction between genetics

and physical processes of growth, movement and death. We are

only just beginning to understand such processes, which pose a

fascinating challenge for biologists, physicists, chemists and

mathematicians.
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3 Long List of Life
.................................

This is a short chapter about a long list.

Early biologists studied life on a human level, considering an

animal or a plant as a whole. They might dissect one, to see how it

was arranged inside, but mostly they investigated life’s diversity.

We all discover, as children, that a simple category like

‘butterfly’ fails to reflect the gaudy reality, with blue butterflies, red

ones, brown ones, yellow ones, white ones, butterflies with spots,

big butterflies, small butterflies, and so on. Even on a human scale,

biology is huge. In order to grasp it, we have to cut it down into

manageable chunks. It is too big and complicated for our village-

level minds; we have to organise it. One way to handle the problem

is to make a list. This was the second revolution.

............
The extraordinary diversity of life on Earth is a relatively recent

discovery, made only after intrepid scientists acquired the courage

and the means to explore the furthest reaches of our planet and

bring back specimens of what they had found.

I recently acquired a facsimile copy of the first edition of

Encyclopaedia Britannica, which dates to 1771. About two-thirds of

the way through Volume I (there are three altogether) is an entry

for ARK. This includes a discussion of how many creatures Noah’s

Ark had to hold:

The dimensions of the ark, as given by Moses, are 300 cubits in

length, 50 in breadth, and 30 in height, which some have
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thought too scanty, considering the number of things it was to

contain; and hence an argument has been drawn against the

authority of the relation. To solve this difficulty many of the

ancient fathers, and their modern critics, have been put to very

miserable shifts: But Buteo and Kircher have proved

geometrically that, taking the common cubit of a foot and a

half, the ark was abundantly sufficient for all the animals

supposed to be lodged in it. Snellius computes the ark to have

been above half an acre in area, and . . . Dr Arbuthnot computes

it to have been 81062 tuns.

The things contained in it were, besides eight persons of

Noah’s family, one pair of every species of unclean animals, and

seven pair of every species of clean animals, with provisions for

them all during the whole year. The former appears, at first

view, almost infinite; but if we come to a calculation, the

number of species of animals will be found to be much less

than is generally imagined, not amounting to an hundred

species of quadrupeds, nor two hundred of birds; out of which,

in this case, are excepted such animals as can live in the water.

Zoologists usually reckon but an hundred and seventy-two of

the quadruped kind needed a place in the ark.

The article goes on to provide details of what sort of food would be

needed for various animals, especially domestic ones, and to suggest

a possible layout for the animal stalls and storage areas. It offers a

startling insight into the thought processes of the period, and it

makes some kind of sense given what was then known about the

diversity of the species that live on our planet. But, without wishing

to offend any sensibilities, the calculations were over-optimistic.

The Book of Genesis tells us that the Ark contained every

species on the planet, though there is some ambiguity about

creatures that live in water. However, an influx of enough fresh

water to submerge the highest mountains would make the sea far

less salty, hence unsuitable for sea creatures; conversely the extra

salt in previously fresh water would kill off all the fresh water

creatures. So everything would have to have gone into the Ark.

We now know that there are millions of species, not just a few

hundred. Each would need its own special habitat, and food –

which would often be other species. Even a common lion would

need a five-month supply of gazelles. Then there’s the leopard, the

cheetah, the tiger, the jaguar, the serval, the lynx, the snow
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leopard, the fishing cat . . . a total of 41 known species, and that’s

just cats.

I’m not trying to poke fun at the Noah tale, which is a

charming moral fable derived from an earlier Babylonian flood story

found in the Epic of Gilgamesh. My point is that less than 250 years

ago, even the wisest scholars greatly underestimated the diversity of

life on Earth, and let their personal beliefs blind them to the

diversity in their own back garden, where a virtually endless parade

of butterflies, moths and beetles – especially beetles – passed before

their eyes every day.

............
Some thinkers, however, were ahead of their time, and aware of the

enormous diversity of nature. It was so diverse, in fact, that

someone had to bring order to it if humans were ever to be able to

understand it.

The first systematic approach to the classification of living

organisms was the brainchild of a Swedish botanist, zoologist and

doctor: Carl Linnaeus. To him we owe the standard system for

naming organisms in terms of species, genus and more extensive

groupings, using Latin (or Latinised) terms, a programme that he

first put into practice in the 1740s – thirty years before that first

edition of Britannica. In fact, the encyclopaedia has an extensive

discussion of Linnaeus’s classification of plants under BOTANY, and a

shorter one for animals under NATURAL HISTORY. Linnaeus initially

intended to include minerals, plants and animals in his

classification, but it soon became clear that minerals were so

different from living things that it was inappropriate to shoehorn

them all into the same grand scheme. However, plants and animals

are both forms of life, and although they have major differences

they also have more in common than a quick glance might suggest.

Many of the details of Linnaeus’s scheme have changed

considerably over the years, but the basic organisational principles

remain the same.

The history of Linnaean classification, and the many changes

that have occurred, is fascinating, but what matters for us is where

it led. Today’s taxonomists – biologists whose speciality is the

classification of living organisms into species and related groupings

– organise the living kingdom into an eight-tier hierarchy:
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. life splits into three domains;

. each domain splits into kingdoms;

. each kingdom splits into phyla (plural of phylum);

. each phylum splits into classes;

. each class splits into orders;

. each order splits into families;

. each family splits into genera (plural of genus);

. each genus splits into species.

There are further divisions into subspecies and so on, but these are

the eight main taxonomic ranks.

Looking at this list from the bottom up, species represent the

different animals, birds, fish, plants, and so on. To a great extent

they agree with our gut instinct that, say, all blue tits are basically

the same type of bird, but thrushes are different. A few years ago

some taxonomists compared the names used by natives of New

Guinea for various birds to the names in the Linnaean

classification, and both made exactly the same distinctions. The

next level up, the genus, similarly corresponds to the view that blue

tits and great tits and coal tits and so on are all variations on the

theme of ‘tit’, whereas song thrushes and mistle thrushes are

variations on the theme of ‘thrush’, but blue tits aren’t. However,

the genus on the whole makes finer distinctions than that: ducks,

for example, fall into more than one genus. Families often reflect

our instinctive opinions more closely.

More precisely, the blue tit is classified as in Table 1 (see over).

This complete classification places the blue tit in a very specific

relation to all other organisms – for example, the frog is also a

chordate but not a bird, whereas the dandelion is a eukaryote but

not an animal. (Eukaryotes have cells with nuclei; chordates

develop a notochord, a precursor of the spinal column, as an

embryo.) However, the full list is a bit of a mouthful, and for most

purposes the final two groups suffice, the famous binomial (double-

barrelled) classification, in which the blue tit is Cyanistes caeruleus,

written like that in italics, with a capital letter for the genus but not

for the species.1 After the first mention the genus is usually

abbreviated: C. caeruleus.
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Table 1 Classification of the blue tit.

Domain Eukaryota Eukaryotes

Kingdom Animalia Animals

Phylum Chordata Chordates

Class Aves Birds

Order Passeriformes Perching or songbirds

Family Paridae Tits

Genus Cyanistes A subset of smaller tits

Species Caeruleus The blue tit

............
Classification, however, is just the start of the complexity of biology

– it is mere ‘butterfly collecting’ (which for lepidopterists it literally

is). There is more to biology than just listing creatures and giving

them fancy names. And the complexity of life is not just a matter

of the quantity of different life forms, gigantic though that number

is. Each individual organism, even the simplest, has enormous

internal complexity. And when it comes to organisms interacting

with each other in ‘the environment’ . . . well, the magnitude of the

task becomes almost overwhelming.

Nevertheless, classification is a sensible first step: it pins down

the area of discourse and provides a basis for deeper comparisons

and the search for general patterns. Many sciences could not have

arisen without an initial stage of ‘butterfly collecting’; a clear

example is crystallography.

Taxonomists have so far listed just over one and a half million

distinct species. They range in size from viruses to blue whales; they

live in virtually every region of the planet, from boiling-hot vents

in the ocean floor to clouds high in the stratosphere; they can be

found in equatorial rainforests, deserts, rivers, lakes, seas, caves . . .

even miles underground in minute cracks in the rocks. About the

only place where life has not yet turned up is in the molten magma

of volcanoes – and given all the unlikely places where life has been

found, in flat contradiction to what most scientists had previously

thought was possible, it wouldn’t be too surprising to find some

exotic life form there as well. It would have to be a kind of life

never before detected on Earth, and I doubt that anyone would lose

their shirt betting against it.

Taxonomists currently recognise about 300,000 species of
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plants, 30,000 fungi and other non-animals, and 1.25 million

animals. Of these animals, 1.2 million are invertebrates – creatures

lacking a backbone, such as snails and shrimps, of which some

400,000 are beetles. The geneticist and evolutionary biologist J.B.S.

Haldane, asked by a lady what his studies had taught him about

God, allegedly replied, ‘That he has an inordinate fondness for

beetles, madam.’ Vertebrates account for a mere 60,000 species:

30,000 fish, 6,000 amphibians, 800 reptiles, 10,000 birds and 5,000-

plus mammals. Among the mammals, about 630 species are

primates, the order of animals that includes monkeys, lemurs, apes

. . . and humans. In the last decade, 53 new species of primates have

been discovered: 40 in Madagascar, two in Africa, three in Asia, and

eight in Central and South America. Such discoveries are surprising

in a world so thoroughly explored, but living creatures can be very

elusive: they’ve evolved to be.

Out of all this enormous number of species, just one has

developed reading, writing, religion, science, technology and

language: Homo sapiens, human beings. Rudiments of most human

attributes can be found in other creatures, and many of the more

intelligent animals – such as chimpanzees and dolphins – are much

smarter than we used to think even a few years ago. For that

matter, so are crows.

How many species are there altogether? Estimates range from 2

million to 100 million, though a figure of 5 to 10 million is

probable. A recent article plumped for 5.5 million, suggesting that

previous estimates may have exaggerated the level of diversity.

Species are becoming extinct faster than they can be discovered.

It is not entirely clear how we should define ‘species’; in fact, it is

not entirely clear that ‘species’ is a biologically meaningful concept

at all. In my schooldays I was taught that there were two species of

elephant, African and Indian. Today zoologists recognise five. In ten

years’ time . . . who knows?

............
Linnaeus’s classification scheme has brought a degree of order into

the apparently chaotic world of life on Earth today. As an

unexpected bonus, its hierarchical structure also hints at the

evolutionary ancestry of today’s organisms.

Nothing, however, is sacred in science, and a vocal minority of
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taxonomists feel that the world of living creatures is not as neat

and tidy as Linnaeus’s artificial scheme suggests. More than a dozen

alternatives have been proposed, in which Homo sapiens becomes

Homo-sapiens, homo.sapiens, homosapiens, sapiens1,

sapiens0127654, and so on. The advantages claimed for such

systems are that they reflect the complex reality of life, instead of

shoehorning it into rigid, tidy categories.

Although these criticisms have some validity, Linnaeus’s scheme

– in its modern form – is convenient for the human mind, and has

been in use for so long now that changing it would be extremely

inconvenient. The widespread resistance to new, allegedly more

rational systems is not just scientific conservatism: it is based on the

realisation of how much effort would be needed to make the

change. Many of the new schemes have flaws of their own, in any

case. But in the long run, a scheme invented in the eighteenth

century, when evolution, DNA and modern classification

techniques did not exist, may well turn out not to be appropriate

for the twenty-first century.

............
Linnaeus’s ideas made zoologists and botanists think more carefully

about characters: the features that distinguish one species from

another. Which characters are best suited for classifying organisms?

Tigers and zebras are both striped, but that doesn’t imply that they

are closely related. In fact, tigers and zebras do not belong to the

same genus, to the same family or even to the same order. Tigers

are in the order Carnivora (carnivores), but zebras are in the order

Perissodactyla (odd-toed hoofed animals). The two species come

together only on the level of their class: both are mammals. So

characters that strike the eye, like the tiger’s stripes, are often less

significant than subtler ones, such as how many toes the creature

possesses.

The more widely a feature is shared, the higher the level of the

corresponding taxonomic rank is likely to be, in the sense that

classes are higher than orders and orders are higher than families.

Higher ranks are more comprehensive. Many different animals

produce milk and suckle their young. This is a key feature of all

mammals, and because it is so widespread it takes precedence over

more superficial characters such as coloration and markings. So
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what matters most about a tiger is that it is an animal, not a plant

(kingdom); among animals it is a chordate (phylum); among

chordates it is a mammal (class); then it is a carnivore (order), then

a cat (family), then a big cat (genus). Only then, at the species level,

do its iconic stripes enter the picture. Correspondingly, what

matters most about a zebra is that it, too, is a mammal, but instead

of being a carnivore it has hooves with an odd number of toes

(order), is horse-like (family) and is very horse-like (genus). Stripes

are shared by three distinct zebra species, and further characters are

required to separate them.

Taxonomists quickly learned that the most important features

for classification were seldom those that immediately attracted the

attention of a human observer. Apparently minor features were

particularly significant in flowering plants: a gigantic tree and a

diminutive weed might be closely related, but two huge trees in the

same forest might be totally different. What mattered most was

often the tiny details of the reproductive organs of the plant –

pistils, stamens, sepals and petals.

Initially, in his Systema Sexuale, Linnaeus grouped flowering

plants according to how many of these various organs it had. He

named the classes of plants Monandria, Diandria, Triandria,

Tetrandria, and so on. He mainly did this for convenience: it was

easy to count how many stamens or petals a flower had, and that

made the system useful for identification. This classification was

still popular in the mid-nineteenth century, for that purpose, but by

then taxonomists had replaced it by a scheme that reflected the

relationships among plants more faithfully. However, reproduction

is a fundamental feature of plants, so the structure and number of

reproductive organs are still important in the classification of

plants.

Counting plant organs gave rise to one of the first extensive

applications of mathematics to a problem in biology: striking

patterns of numbers and shapes observed in the leaves and flowers

of plants. The next chapter outlines the story, first using the kind of

mathematics that was available in the nineteenth century and the

early twentieth, then moving ahead to the modern era to see how

the viewpoint has changed as new biological discoveries have

motivated new questions for mathematicians to answer.
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4 Florally Finding Fibonacci
.................................

The first two revolutions in biology set the pattern of subsequent

research for over a century. The accepted way to advance biological

knowledge was to seek out new species and fit them into the

Linnaean scheme; to study them in detail, using a microscope

where necessary, and to record and report what you found. This

was the ‘butterfly collecting’ era of biology, when the aim was to

catalogue life’s diversity and celebrate its richness.

Amid the deluge of detail, a few general principles started to

emerge, especially when it came to general relationships between

organisms such as predator/prey, parasite/host, mimicry and

symbiosis. These concepts helped to organise an ever-growing body

of knowledge. But the predominant model was to collect, catalogue

and observe. You weren’t a biologist: you were a botanist

(specialising in plants), a zoologist (animals), an entomologist

(insects), a herpetologist (snakes), an ichthyologist (fishes), and so

on.

The physical sciences followed a very different path. The same

period, from Linnaeus in 1735 to Darwin in 1859, witnessed the

explosive growth of physics, fuelled by the discovery of universal

laws of nature, expressed in the arcane language of mathematics.

But while physics was being unified by general mathematical

principles, biology was being overwhelmed by a morass of

individual examples. There were few general principles, hardly any

laws to speak of and virtually no mathematics.

Even so, mathematics managed to squeeze itself into a few areas

of biology, notably the strange numerology of the plant kingdom. A

very specific sequence of numbers shows up repeatedly in
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association with plants, in several different contexts: the number of

petals in a flower, the geometry of seed heads, the arrangement of

leaves along a stem, the lumps on a cauliflower, and the way

pineapples and pine cones fit together.

With the mathematical techniques available and the view of

biology that prevailed around 1850, these numerical patterns could

be – and were – described in considerable detail. Description,

though, was as far as it went. Explaining why the patterns occurred

was another matter entirely, beyond the scope of the science of that

period. In this chapter, we will see how far Victorian-era science

managed to get when grappling with the numerology and geometry

of plants. Then, temporarily diverting from the historical story,

we’ll see how modern mathematics and a dash of chemistry have

filled some of the gaps.

............
Marigolds typically have 13 petals. Asters have 21. Many daisies

have 34 petals; if not, they usually have 55 or 89. Often, especially

in cultivated plant varieties, the number of petals is twice as large,

because plant breeders have learned how to double up the petals.

On the whole, though, you seldom see a daisy with 37 petals, and if

you see one with 33 then a petal has probably fallen off.

Sunflowers, which also belong to the daisy family, usually have 55,

89 or 144 petals. Exceptions are usually the result of damage or

disturbance while the young plant is maturing.

At first sight, there seems to be no particular reason why nature

should favour these numbers – or any specific number, come to

that. Petals are arranged like the spokes of a wheel around the

central region of the flower. Just as a wheel can have any number of

spokes, there seems to be no obvious restriction on how many

petals can or cannot fit into the available space. This makes the

limited list of numbers distinctly mysterious.

From today’s gene-centred viewpoint, a plant could presumably

have any reasonable number of petals, depending on the

‘instructions’ coded in its genes. So we would expect to find specific

numbers for particular species, but not the same small list of rather

strange numbers for many different species. However, this is what

nature supplies, as Table 2 (see over) indicates. Other numbers are

much rarer, though they do occur: for example, fuchsias have 4
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petals. Exceptions like this often involve the numbers 4, 7, 11, 18

and 29, and I’ll return to these later because they actually confirm

more modern theories, rather than disproving them.

To compound the mystery, the same curious numbers show up

elsewhere in the plant kingdom. A notable example is the

arrangement of leaves on the stem of a plant, technically known as

phyllotaxis. Some plants use very simple arrangements, with leaves

arranged in pairs, one on either side. But many arrange their leaves

in a helix, so that successive leaves along the stem are placed at a

specific angle relative to the previous leaf. And those angles involve

the same list of special numbers.

A typical case occurs for an angle of 1358, which is 3/8 of a full

circle. If we say that the first leaf is at angle 08, then the second will

be at 1358, the third at 2708, and so on. The angles of successive

leaves are the integer multiples of 1358. Subtracting 3608 whenever

the numbers become larger than a full turn, we obtain the sequence

of angles (with the corresponding fractions of a full circle listed

underneath):

08 1358 2708 458 1808 3158 908 2258 08
0 3/8 6/8 1/8 4/8 7/8 2/8 5/8 0

This pattern then repeats indefinitely. (I’ve left fractions like 6/8 as

they are instead of reducing them to 3/4 to make the pattern

clearer.) Figure 7 shows how these angles create a helical

arrangement of leaves.

The same kind of behaviour occurs for many other plants, but

several different fractions of a full turn can occur. However, other

simple fractions, such as 2/7, are conspicuously absent. The ones
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Table 2 The number of petals on a flower.

No. of petals Flowers

3 Iris, lily

5 Buttercup, columbine, larkspur, pink, wild rose

8 Coreopsis, delphinium

13 Cineraria, marigold, ragwort

21 Aster, black-eyed susan, chicory

34 Plantain, daisy, pyrethrum

55 Daisy, sunflower

89 Daisy, sunflower

144 Sunflower
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listed in Table 3 are closely related to the numbers observed in

petals. In fact, each fraction in the list is formed from two of the

numbers 1, 2, 3, 5, 8, 13. Apart from 1 and 2, these are all petal

numbers. This is not a complete surprise, because petals are

modified leaves, but it requires explanation.

Exactly the same numbers show up in several other features of

plants, adding to the evidence that these patterns are not mere

coincidence. Pineapples are easily recognised by the roughly

hexagonal pattern on their surface. The hexagons are individual

fruits, which coalesce as they grow. They fit neatly together, not

into the standard honeycomb tiling, but into two interlocking

families of helical spirals. One family winds anticlockwise, viewed

from above, and contains 8 spirals; the other winds clockwise, and

contains 13. It is also possible to see a third family of 5 spirals,

winding clockwise at a shallower angle (Figure 8, see over). The
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Table 3 Fractions of a turn between successive leaves in different
plants.

Fraction of a turn between

successive leaves

Plant

1/2 Grasses

1/3 Beech, hazel

2/5 Oak, apricot

3/8 Poplar, pear

5/13 Willow, almond

Fig 7 Left: The helical arrangement of successive leaves separated by 3/8 of a

turn. Right: The same helix on the cylindrical surface of the plant stem

rolled out flat. Note that 3608 is equivalent to 08, so the two ends ‘wrap

round’ and join.
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scales of pine cones form similar sets of spirals. So do the seeds in

the head of a ripe sunflower (Figure 9), but now the spirals are not

helical, but lie in a plane.

Clearly there is something about this list of numbers that makes

them unusually suitable for plant structure. But why are these

numbers so common, while others are much rarer?

............
The answer began with rabbits.

In 1202 the Italian mathematician Leonardo of Pisa wrote a

textbook on arithmetic. One of the exercises he set his readers was
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Fig 8 Three families of spirals in a pineapple.

Fig 9 Two families of spirals in the head of a sunflower: 34 wind clockwise, 21

anticlockwise.
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a problem about the progeny of a pair of rabbits. I’ll discuss this

problem and its answer in more detail in Chapter 16, when we take

a look at the mathematics of population growth. Here we need to

focus only on the resulting sequence of numbers, which lists how

many pairs of rabbits there are in successive breeding seasons:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377

and so on. The rule for forming these numbers (other than the first

two 1’s, which we take as a starting point) is that each is obtained

by adding the previous two: 2¼1þ1, 3¼1þ2, 5¼2þ3, 8¼3þ5,

13¼5þ8, and so on. Leonardo later acquired the nickname

Fibonacci, and ever since 1877, when the French mathematician

and populariser Édouard Lucas wrote about this sequence, its

members have been known as the Fibonacci numbers.

To paraphrase J.B.S. Haldane, the plant kingdom seems to have

an inordinate fondness for Fibonacci numbers.

Leonardo’s association of this sequence with rabbit progeny,

though superficially biological, is completely irrelevant to petal

numbers and phyllotaxis. Indeed, its assumptions are so artificial

that it’s not terribly relevant to rabbits either. But one

mathematical feature of the answer is distinctly relevant: the

fractions formed by successive Fibonacci numbers. If we write these

fractions as decimals, something emerges:

1/1¼1.000, 2/1¼2.000, 3/2¼1.500, 5/3¼1.666, 8/5¼1.600,

13/8¼1.625, 21/13¼1.615, 34/21¼1.619, 55/34¼1.617

As the numbers increase, the fraction gets closer and closer to a

particular value, which to six decimal places is 1.618034. In fact, it

is exactly equal to (1þ√5)/2, and is usually denoted by the symbol f
(the Greek letter phi). This number is irrational: that is, it cannot be

represented by the ratio of two integers – no fraction can be exactly

equal to it. In fact, it was one of the earliest irrational numbers

discovered, after the square root of two, and it was known to the

ancient Greeks in the context of the geometry of pentagons.

The fractions that appear in phyllotaxis are also ratios of

Fibonacci numbers, but instead of using consecutive members of

the sequence, the numerator (top) and denominator (bottom) are

spaced two steps apart. Moreover, the larger number is the

denominator, not the numerator. A typical case is 5/13, constructed
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from the portion of the Fibonacci sequence that reads 5, 8, 13. The

first few fractions of this type are:

1/2¼0.500, 1/3¼0.333, 2/5¼0.400, 3/8¼0.375, 5/13¼0.384,

8/21¼0.380, 13/34¼0.382, 21/55¼0.381, 34/89¼0.382

Again we see a pattern: the fractions get closer and closer to a

particular number, this time 0.381966. This number is closely

related to f. In fact, some simple algebra shows that the exact value

is 2�f.
The special properties of the golden number f provide an

alternative interpretation. Suppose we divide a full circle (3608) into
two arcs that are in golden ratio. That is, the angle determined by

the larger arc is f times the angle determined by the smaller arc.

Then the smaller arc is 1/(1þf) times a full circle. Numerically, this

expression is 0.381966: the number derived above. A bit more

algebra confirms that this relationship is exact. Numerically, this

angle is very close to 137.58, and it is called the golden angle.

The upshot of all this is that we can interpret the fractions

observed in phyllotaxis as approximations to the golden angle.

That’s all very well, but so far we have just replaced one

mathematical puzzle by two others. The occurrence of Fibonacci

numbers in flowers now seems to depend on a special angle and a

sequence of related fractional approximations. Why this angle, and

why these fractions?

The fractions are the easier part: they can be characterised

mathematically as the best fractional approximations to the golden

angle, for a given size of denominator. Not just in the sense that,

say, 3/8 is a closer approximation than 2/8 or 4/8, but that if you

look at fractions with larger denominators, the first time you get a

closer approximation is when you reach 5/13. After that, the next

improvement comes at 8/21, and so on. Classical mathematical

concepts known as ‘continued fractions’ establish this relationship

between the golden angle and the phyllotaxis fractions. So the key

to the mystery is to understand why the golden angle appears. If we

can do that, the role of the fractions should follow.

............
The next step in solving the riddle of phyllotaxis was biological:

specifically, taking a look at how the shoot of a growing plant
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changes on the cellular level. In 1868 the German botanist Wilhelm

Hofmeister made extensive observations of this process, and laid

the foundations for all subsequent work on the problem.

In the early stage of development, a plant appears to be little

more than a tiny green shoot, with little structure. As it grows,

small leaves begin to appear, and are ‘left behind’ as the shoot

heads skyward. The main changes occur at the tip of the shoot. We

can get a reasonable mental image of the growth pattern by

thinking of a fountain, where water sprays upwards from the centre,

moves outward radially and then starts to fall back towards the

surface of the pond. Now suppose that the entire fountain heads

skywards like a rocket, and the water that trails behind it ‘freezes’

once it drops below the level of the fountain’s centre. Then you

would see a growing column of frozen water, with a spurting

fountain, climbing towards the heavens, perched precariously on

top of it. All of the ‘new’ water would be produced by the fountain

at the tip of the column, from which it would migrate radially until

it reached the column’s edge and froze.

A growing shoot is like that, but using new cells in place of

droplets of water. For simplicity we can think of the shoot as a

cylinder with a rounded top. Most new growth occurs near the tip

of the shoot, close to the centre of the stem. New cells appear,

through cell division, near the centre of the tip, and they migrate

outwards towards the edge, where (at this level of description) they

stop. In this way the growing tip pushes upwards, leaving a trail of

new cells behind it, and the cylindrical column becomes taller

without getting thicker.

As the plant matures, of course, the stem does get thicker, and

many other changes occur, such as leaves getting bigger, buds

appearing, and so on. But the explanation of phyllotaxis does not

depend on these later changes: the basic pattern of leaf

development – and much else – is determined by what happens at

the growing tip.

The events unfolding there would be invisible without a

microscope, because they involve small clumps of cells known as

primordia (plural of primordium). Each clump will eventually

become a leaf, so the positions of the leaves are set by the

microscopic geometry of the primordia. Hofmeister discovered that

the process begins with the appearance of two primordia, located

together at the centre of the tip, on opposite sides. As these two
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start to migrate radially outwards, a third primordium appears near

the centre, between them. There is insufficient room for this new

primordium to grow to full size in that location, and the previous

two push it away from the centre into an open space. The interplay

of these forces causes the three primordia to arrange themselves so

that the angles between the first and second, and the second and

third, are close to the golden angle.

Before these three primordia have moved very far, a fourth

appears near the centre of the tip. Because three times the golden

angle is a little bit more than a full turn of 3608, this fourth

primordium appears close to the first one and pushes it outwards.

Then a fifth appears near the centre, and pushes against the

second, as shown in Figure 10. The result of all this pushing and

shoving, with new primordia popping into existence in the middle

while the others move slowly outwards, is a beautiful geometric

pattern. Successive primordia are spaced at multiples of the golden

angle along a spiral. The shape of the spiral is determined by the

rate at which the primordia move, and grow, so Hofmeister called

it the generative spiral.

Shorn of the biological detail, we now have a mathematical

description of the process that creates the geometrical and

numerical patterns in phyllotaxis. Successive primordia lie on the

generative spiral, each separated from its successor by the golden

angle or a close approximation to it. As time passes, any given
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Fig 10 Left: Theory. Successive primordia (numbered in order of appearance) lie

at a fixed angle to the previous one, and slowly migrate outwards. Right:

Experiment. The growing tip of Arabidopsis (cress) as seen by an electron

microscope, showing successive primordia (P8–P1 – the numbers are in

reverse order compared to the previous picture). The next primordium will

appear at P0. The region surrounding P0 is the source of new cells.
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primordium migrates radially until it reaches the edge of the stem’s

rounded tip, at which point it stops moving. As the shoot grows,

the result is a series of primordia, spaced at integer multiples of the

golden angle along a helix that winds up the cylinder that

represents the stem.

Victorian mathematicians, among them the mathematical

physicist Peter Guthrie Tait, best known for his Treatise on Natural

Philosophy, turned Hofmeister’s ideas into a tidy mathematical

description of phyllotaxis, based on diagrams like Figure 7 (see

p. 41). But description was as far as Victorian mathematics got. At

least one crucial question remained open: what is so special about

the golden angle when it comes to plant growth? Yes, the golden

angle comes from the golden number, but why is the golden

number relevant?

In On Growth and Form, Thompson discusses one popular answer

from the Victorian era: since the golden number is irrational, such

an arrangement prevents any leaf from being exactly above

another, allegedly allowing rain and sunlight to reach the leaves

more effectively. He points out that the same argument works for

any irrational number, and that the golden number can be obtained

from many number sequences, not just the Fibonacci sequence. (He

might also have pointed out that the approximations such as 5/13

that appear in real plants, which we are trying to explain, are

rational.) He remarks, dismissively, that ‘all such speculations as

these hark back to a school of mystical idealism’.

In 1917, when Thompson’s book first appeared, this must have

seemed a shrewd comment. Golden numbers and Fibonacci

sequences had a cultish appeal, and gave rise to an extensive

literature that was long on speculation and short on fact. However,

more recent work has established that the golden angle is a genuine

feature of plant numerology, and so are its Fibonacci-fraction

approximations. The reasons go beyond number mysticism by

moving on from merely describing the geometry, and taking

account of the dynamics of the growing plant. Progress on this

problem has occurred in a series of steps, and we can take the story

a little further here by temporarily following more modern

developments, before returning to the historical order in the next

chapter, with the third revolution in biology.

Profile Books - Maths of Life Data Standards Ltd, Frome, Somerset – 10/2/2011 01 Maths of life Chapters.3d Page 47 of 336

Florally Finding Fibonacci // 47



............
The special features of the golden angle are easier to appreciate if

we turn to a related feature of plants: not the positioning of

primordia as the young shoot first grows, but the positioning of

seeds in the flower of a mature plant. Fibonacci numbers are to be

found here as well. So is Hofmeister’s generative spiral, because the

locations of the seeds are determined by patterns of primordia in

the young shoot. These patterns are not activated until the plant

matures, but they are created by the same mechanism that

generates leaves. So again, the main issue is the geometry of

primordia, which generate not only the leaves of the plant but

many of the other interesting organs, including the petals, and the

seeds in the seed-head.

We’ve already seen in Figure 9 (see p. 42) that the seeds in a

sunflower head are packed together in such a way that the human

eye is immediately attracted to two interpenetrating families of

spirals, one running clockwise, the other anticlockwise. If you count

how many spirals there are in each family, you typically find two

consecutive Fibonacci numbers. By the way, these spirals are not

the generative spiral, which is more loosely wound and not

apparent to the eye – unless you join primordia in the order in

which they form.

Petals form at the outer end of one family of spirals, again

cryptically determined by the original pattern of primordia, which

are specialised to form petals, not seeds. So a Fibonacci number of

spirals implies a Fibonacci number of petals. In short, it is enough

to explain why Fibonacci numbers turn up in the spirals.

In 1979, Helmut Vogel of the Technical University of Munich

considered a simple mathematical representation of the geometry of

sunflower seeds, and used it to explain why the golden angle is

especially suited to such arrangements.1 In his model, the nth

primordium is placed at an angle equal to n times 137.58, and its

distance from the centre is proportional to the square root of n.

These two numbers determine its location, and Hofmeister’s

generative spiral is revealed as a so-called Fermat spiral, which

becomes more tightly wound as it moves outwards from the centre.

Using this formula, Vogel worked out what would happen to

the seed head if the same generative spiral were employed, but the

golden angle of 137.58 were changed, ever so slightly. The result,

shown in Figure 11, is striking. Only the golden angle leads to seeds
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that are packed closely together, with no gaps or overlaps. Even a

change in the angle of one-tenth of a degree causes the pattern to

break up into a single family of spirals, with gaps between the

seeds.

Vogel’s model explains why the golden angle is special, and

supports the view that it plays an active role in phyllotaxis, and is

not some numerical coincidence viewed through mystical eyes.

However, the full explanation lies deeper. It turns out that – just as

Hofmeister had said – the dynamics of the growing plant causes

primordia to be pushed into golden-angle relationships. As the cells

grow and move, they create forces that affect neighbouring cells.

............
Forces are an essential ingredient of mechanics, which is the

mathematical physics of moving objects. Mechanics was born in

experiments that Galileo made around 1600, when he rolled balls

down a slope to investigate the effects of gravity. It became a

recognised branch of mathematics in 1687, when Newton published

his epic Philosophiae Naturalis Principia Mathematica (‘Mathematical

Principles of Natural Philosophy’) in which he related the motion

of a body to the forces acting on it. It has since become a

cornerstone of science.

Once mechanics enters the picture, attention switches from

merely describing natural phenomena to investigating the

mechanisms that cause them. The golden angle and its Fibonacci

fractions cease to be numerical curiosities, and their presence is

now explained by the interplay of forces in the growing stem.
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Fig 11 Fermat spiral patterns. Left: Spacing 1378, just less than the golden angle.

Middle: Spacing 137.58, the golden angle. Right: Spacing 1388, just
greater than the golden angle.
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Contrary to Thompson’s scepticism, the golden number and the

mathematics associated with it do, in fact, play key roles.

In 1992 the French mathematical physicists Stéphane Douady

and Yves Couder investigated the mechanics of systems in which

point-like objects representing primordia are repeatedly introduced

near the centre of a circular disc at equally spaced instants of time,

and then made to move outwards along a radius of the circle.2 They

assumed that these objects repel each other, much as two north

poles of magnets do. Then they worked out what would happen in

two ways: by experiment, and by computer simulation.

In their experiments, successive primordia were represented by

droplets of magnetic fluid, under the action of a magnetic field that

caused them to repel each other, so that they organised one

another into patterns while migrating in a radial direction. The

result depended on the strength of the magnetic field and the

intervals between droplets, but in the most common pattern that

developed the droplets spontaneously packed themselves into

families of spirals just like those in the sunflower head, complete

with golden angle and Fibonacci numerology.

Computer simulations revealed more detail, showing that the

system of droplets naturally homes in on Fibonacci-fraction

approximations to the golden angle. The fraction that emerges

depends on the rate at which new droplets are added. The precise

relation is captured by a so-called bifurcation diagram (Figure 12).

This shows how the numbers in the spirals, and the associated
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Fig 12 Bifurcation diagram for phyllotaxis, after Douady and Couder.
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angle between successive primordia, relate to this rate. The main

features of the bifurcation diagram are two curves, called the

Fibonacci branch and the Lucas branch. There are other branches –

in principle infinitely many – but these are very short, so they

rarely occur in practice.

To interpret the curves, we start at the right hand end and move

to the left. When the rate of droplet formation is bigger than 0.8,

the angle is 1808, so successive droplets line up on either side of the

centre. As the rate slows down, the angle changes continuously,

following the curve that bends from the top of the picture down

towards the left, and the angle changes to about 1408. This curve,
the Fibonacci branch, corresponds to the most likely behaviour. It

wiggles up and down, and at each peak or trough (shown by a

white dot) the numbers of spirals in the two families move one step

up the sequence. If we write, say (3, 5) to mean 3 families in one

direction and 5 in the other, then these pairs of numbers change

from (1, 2) to (2, 3), then to (3, 5), then to (5, 8), and so on, as the

curve runs from right to left. The angle converges towards the

golden angle of 137.58, as expected.
Now the remaining pieces of the mathematical puzzle were

falling into place: why the golden angle is the organising principle

behind the geometry, and why what we actually observe are

Fibonacci-fraction approximations. The main missing ingredient

was a rigorous mathematical proof that the features seen in the

simulations are what they appear to be. This was provided in 1991

by Leonid Levitov, a condensed matter physicist now at the

Massachusetts Institute of Technology. In 1995 Martin Kunz, a

physicist at the University of Lausanne in Switzerland, added many

further details.3

These results also explained a puzzling feature of the problem

which I have glossed over so far: the occasional appearance of non-

Fibonacci numbers, such as the four petals of the fuchsia. These

exceptions also appear in Douady and Couder’s bifurcation

diagram, but on the Lucas branch – so they have the same

explanation as the Fibonacci numbers. Now the numbers of spirals

come from a sequence very like the Fibonacci sequence, called the

Lucas numbers:

1, 3, 4, 7, 11, 18, 29, 47, 76, 123

and so on. The rule for forming the numbers, after the first two, is
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the same as before: each number is the sum of the previous two,

but here the first two numbers are 1 and 3, not 1 and 1. The ratios

of successive Lucas numbers also approach the golden number. The

pairs of numbers of spirals now become (1, 3), then (3, 4), then

(4, 7), then (7, 11), and so on. The angle converges to 99.58.
The other, shorter, branches in the bifurcation diagram

correspond to patterns that follow sequences like the Fibonacci and

Lucas sequences, but starting with different numbers. They

correspond to angles such as 77.98 and 151.18, and are hardly ever

seen in plants.

The four petals of the fuchsia are not the only occurrence of

Lucas numbers in plants. Some cacti exhibit a pattern of 4 spirals in

one direction and 7 in the other, or 11 in one direction and 18 in

the other. A species of echinocactus has 29 ribs.4 Sets of 47 and 76

spirals have been found in sunflowers.5

............
Cacti lead naturally to an extension of the mathematical analysis of

plant structure. In the models I have just described, primordia are

represented as discrete point-like objects, and the forces act on the

associated points. In a more realistic ‘continuum’ model, the forces

would be distributed over the entire surface of the growing stem,

and the primordia would develop as a consequence of those forces,

much as a sheet of metal will buckle when its edges are compressed.

The techniques required here come from a major branch of applied

mathematics: elasticity theory. This studies how shapes that are able

to bend or compress behave when they are subjected to external

forces; it is widely used by engineers when designing buildings,

bridges and other large structures.

If you distort an elastic object, you have to do work. Think of

squeezing a rubber ball, for instance. The work you do in squeezing

the ball is stored in the material as a form of energy, known as

elastic energy. A central principle in elasticity theory is that systems

behave so as to minimise their elastic energy. In 2004, Patrick

Shipman and Alan Newell, mathematicians at the University of

Arizona in Tucson, applied elasticity theory to continuum models

of a growing plant shoot, with particular emphasis on cacti – which

are widespread in Arizona.6 They modelled the formation of

primordia as a kind of buckling of the surface of the tip of the
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growing shoot, and showed that minimum-energy configurations

take the form of superimposed patterns of parallel waves.

These patterns are governed by two factors: the wave number,

which is related to wavelength, and the direction in which the

waves point. The Fibonacci numerology, in this approach, arises

because the most important patterns involve the interaction of

three such waves, and in the relevant states, the wave number for

the third wave must be the sum of the other two wave numbers.

The spirals on the pineapple in Figure 8 (see p. 42) show three

systems of roughly parallel lines of hexagons: it’s basically the same

idea. So this model traces the arithmetic of Fibonacci numbers

directly to the arithmetic of wave patterns. Not only the numbers,

but even the mathematical rule for their formation, correspond

directly to the underlying mechanics of the buckling tip.

Any botanist will tell you that plant tips don’t really buckle:

they grow. So although the elasticity model captured some of the

main features of plant growth, it was still missing some crucial

ingredient. The forces that act on primordia explain their geometry,

but they don’t explain how new primordia are produced, and why

they appear at the places where elastic buckling says they should.

The answer to this question required not mathematics, but

biochemistry. The formation of primordia is driven by a hormone,

called auxin. Newell and colleagues have shown that similar wave

patterns arise in the auxin distribution.7 So the story as it is now

understood involves an interplay among the biochemistry of the

growing plant, the mechanical forces between cells, and the plant’s

geometry. Auxin stimulates the growth of new primordia. Primordia

exert forces on one another and, in combination with the growth

of the plant, these forces create the geometry. The geometry may

also affect the plant’s biochemistry, for example by triggering the

production of extra auxin in specific places. So there is a complex

set of feedback loops between biochemistry and mechanics,

mechanics and geometry, and geometry and biochemistry – and all

of these ingredients are required. Current mathematical theories

therefore have to take into account many features of the biology

and physics of the growing plant that were undreamt of in

Victorian times.
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............
As a result of all this activity, we now know that D’Arcy

Thompson’s scepticism was unfounded. The role of the golden

number in phyllotaxis is genuine and informative. The associated

mathematics provides a convincing explanation – indeed, several

complementary ones – of Fibonacci numerology. It also explains

why some plants do not have Fibonacci numbers of petals, by

predicting the rarer occurrence of Lucas numbers. These account for

most of the exceptions seen in nature. So the Victorian work on the

golden angle, as a description of phyllotaxis, has motivated deeper

mathematical theories that are more broadly applicable. What

seemed to be exceptions, a century ago, actually confirm the deeper

mathematical theory that underpins the Victorian one.

However, many plants do not fit into even this more general

description of phyllotaxis. Some even seem to produce leaves and

other organs pretty much at random. So the story is still

incomplete.

A word of warning is also in order. Thompson had a reason for

his doubts, and it has not entirely gone away. Humanity’s

fascination with the golden number has often led to exaggerated

claims for its importance, usually in contexts that are

mathematically vague. Entire books have been written about the

golden number in nature and art, finding it in the spirals in goats’

horns and in the proportions of the Great Pyramid and the

Parthenon. It is often stated that the most aesthetically pleasing

shape for a rectangle occurs when its sides are in the golden ratio.

There seems to be very little basis for this claim: it is a

mathematical urban myth. Many of these supposed occurrences of

golden numerology are probably spurious or accidental. Some

methods of statistical analysis can concentrate data around the

golden number, exaggerating its significance. Any measurement

close to 1.6 can be attributed to the golden number, but the

relationship is likely to be coincidental, unless – as is now known to

be the case for phyllotaxis – the phenomenon concerned arises

from a deeper model in which the golden number turns up for solid

structural reasons.

It is also often stated that the nautilus shell, which forms a

beautiful spiral, is an example of the golden number in nature. This

is a misunderstanding. The shape of the shell is impressively similar

to a logarithmic spiral, in which successive turns of the spiral are

Profile Books - Maths of Life Data Standards Ltd, Frome, Somerset – 10/2/2011 01 Maths of life Chapters.3d Page 54 of 336

54 // Mathematics of Life



magnified by a fixed amount (call it the growth rate). Moreover,

there is an elegant logarithmic spiral whose growth rate is related to

the golden number. However, there are many logarithmic spirals,

with many different growth rates, and the nautilus has a different

growth rate from the golden number spiral. So there is no

meaningful relation between the golden number and the nautilus.

It would be truer to say that phyllotaxis is virtually the only

context – aside from laboratory physics – in which the golden

number can confidently be associated with the natural world. And

even there, the connection is not universal. But we should not

expect connections between mathematics and biology to be

universally valid, subject to absolutely no exceptions. Biological

systems are versatile and adaptable. Mathematical models will apply

within some range of validity, but it’s not sensible to expect them

to apply everywhere.

Our excursion into Victorian and early-twentieth-century

mathematical biology, with extra insight from its modern sequels, is

now complete. We have seen what could be achieved on the basis

of the first two biological revolutions. Now we return to the

remaining three revolutions, which will set the scene for the

dominant theme thereafter: mathematics.
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5 The Origin of Species
.................................

Revolution number three got off to a bad start.

The year was 1858; the date, 1 July. The Linnaean Society, then

and now the world’s oldest society for natural history and

taxonomy, had been in existence for seventy years. It was the final

meeting of the session, and the members had their minds on

summer holidays and outside activities. The president, Thomas Bell,

was delivering his annual review of the highlights of the society’s

scientific activities. But it had been a bad year, in his opinion, and

there hadn’t been any highlights. ‘The year which has passed,’ said

Bell, ‘has not, indeed, been marked by any of those striking

discoveries which at once revolutionize, so to speak, the

department of science on which they bear’.1

At the time, no one objected to his summing up. Even the two

scientific papers that had been squeezed into the programme of the

meeting at the last minute had made no impact; when the

members departed for their homes, no one seems to have been

terribly impressed by them. As was the practice at the time, these

papers were read out loud to the Society on behalf of the authors.

They were on very similar topics, and their titles were ‘On the

tendency of species to form varieties’ and ‘On the perpetuation of

varieties and species by natural means of selection’. Their authors,

respectively, were Charles Darwin and Alfred Russel Wallace.

The two papers, deliberately presented simultaneously to avoid

any priority disputes, announced the theory of evolution by means

of natural selection.
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............
Long before Darwin was born, biologists were trying to understand

how the planet’s innumerable species had come to be. Almost

everyone considered them to have been divinely created, the

default social assumption of the time. But that is to answer every

question with the same facile formula. Where do dogs come from?

God created them. Where do dragons come from? God created

them. Well, no, he didn’t, but you wouldn’t be able to deduce that

from the answer.

In his Physicae Auscultationes (‘Lectures on Nature’), the Greek

philosopher Aristotle objected to explanations of nature that invoke

purpose, such as ‘rain falls in order to make corn grow’. He argued

that if this were the case, then rain would also exist in order to

spoil the famer’s corn if he threshed it outdoors. Continuing this

line of thought, he asked why animals’ anatomical features are so

obviously related to one another’s. His answer is surprisingly

modern: if anything didn’t work in reasonable concert with the rest

of the body, it would have been impossible for the animal to

function, so neither the animal nor that combination of features

would survive.

By the later eighteenth century, some scientists were beginning

to think that over long periods of time, organisms could change.

Among them was Darwin’s grandfather, Erasmus. Professionally he

was a physician, but he had the broad interests of a polymath,

including natural history, physiology, abolition of the slave trade

and inventing things. He was a founder member of the Lunar

Society, a scientific society which met in Birmingham once a

month on the night of the full moon, to make it easier for

members to find their way home in the dark. His main claim to

biological fame is the Zoonomia of 1794–6, in which he asked

whether it would be too bold to imagine that

in the great length of time since the earth began to exist,

perhaps millions of ages before the commencement of the

history of mankind . . . all warm-blooded animals have arisen

from one living filament, which the great First Cause endued

with animality, with the power of acquiring new parts, attended

with new propensities, directed by irritations, sensations,

volitions and associations, and thus possessing the faculty of

continuing to improve by its own inherent activity, and of
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delivering down these improvements by generation to its

posterity.

Erasmus (let me call him that to distinguish him from his

grandson) was convinced that species could ‘transmute’ – that is,

change spontaneously – and that the process began with a single

primitive organism. Biologists now call this idea ‘universal common

ancestry’. But Erasmus offered no specific mechanism that could

produce such changes.

Darwin doesn’t mention his grandfather’s work in the Origin,

possibly because he found Zoonomia too eccentric, but probably

because he did not consider it relevant. (We know he had read it,

because he wrote the title on the opening page of his ‘B Notebook’,

his first recorded step towards the Origin.) Unlike his grandfather,

Darwin wanted to know how species changed. Erasmus seems to

have thought that animals could acquire new abilities, and that

these would automatically be passed on to their descendants. This

belief in the ‘inheritance of acquired characters’ was soon to be

advocated more explicitly by a better-known figure, whom history

has treated somewhat unfairly.

............
Jean-Baptiste Lamarck, the eleventh child of an upper-class family

down on its luck, trained as a Jesuit but abandoned his studies to

join the French army, then at war with Prussia. When illness forced

him to retire from the military, he tried his hand at medicine and

banking, before settling on botany and becoming keeper of the

royal herbarium to King Louis XVI in 1788. He retained the

position, but not the royal connection, through the climax of the

French Revolution, whereas Louis’s head failed to retain its

connection to his body. Lamarck then became curator and professor

of invertebrate zoology at the National Museum of Natural History.

His most significant publications include the 1809 Philosophie

Zoologique (‘Zoological Philosophy’) and the seven-volume Histoire

Naturelle des Animaux sans Vertèbres (‘Natural History of

Invertebrates’) published between 1815 and 1822. In these books,

and elsewhere, he developed and elaborated a novel idea: animals

can change from generation to generation in response to their

environment. To Lamarck, moles were not blind because they had

been created that way, but because they lived underground and so
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did not need the sense of sight. Their ancestors had once been

sighted, but the ability to see had been lost because it was not

needed. He tried to find a credible mechanism for such changes,

among them being two ‘forces’: the tendency of living creatures to

become more complex, and their tendency to adapt to their

surroundings. He thought that living creatures ascended a ladder of

progress, propelled by some inherent force that created ever-

increasing order.

Today, Lamarck’s name is most often associated with a

discredited view of evolution, the ‘inheritance of acquired

characters’: if some organism happens to develop a useful feature,

such as a longer neck or stronger muscles, then this feature can and

will be inherited by its descendants. Thus a blacksmith whose trade

causes him to have very strong arms will have sons with strong

arms – which was often true, because sons went into their fathers’

trade. However, Lamarck did not believe that evolving organisms

changed in a purposeful way, and he did not think that every

acquired character would be passed on to future generations. He

believed that all changes in organisms had a purely physical origin.

Lamarck distilled his view of adaptation into two laws:

1. If animals use an organ more often, that organ will become

stronger and larger. Conversely, any organ that is not used will

weaken and eventually disappear.

2. Any such improvement or loss, if it is related to the animals’

long-term environment, will be passed on to future generations.

The second law is where the notion that Lamarck believed in the

inheritance of acquired characters comes from. He did, but only for

certain types of character. Darwin pointed to Lamarck’s emphasis

on use and disuse, and interpreted those aspects of Lamarck’s work

as a form of natural selection. He praised Lamarck for drawing

attention to ‘the probability of all change in the organic world

being the result of law, not miraculous interposition’. In Darwin’s

view, Lamarck came close to a scientifically acceptable mechanism

for evolution, but fell short.

............
As a young man, Darwin was interested in geology, having been

enormously impressed by the concept of deep time – the idea that
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the Earth is enormously old, whose significance was emphasised by

Charles Lyell. None of this greatly impressed his father, who wanted

Darwin to be a doctor and take his rightful place in Victorian

society. But Darwin’s stint as a medical student at the University of

Edinburgh didn’t work out, so his father decided that the son

would do better to settle down and become a country vicar. That

would leave him ample spare time to pursue his geological fancies.

So in 1828 Darwin entered the University of Cambridge to study

theology.

Unfortunately for his father’s careful plans, Darwin was

promptly bitten by a bug. Ironically, it came about because of a

country vicar, William Kirby, who collaborated with the

businessman William Spence on a four-volume treatise, An

Introduction to Entomology. The book sparked a national craze for

collecting beetles, and Darwin joined in with a passion, hoping to

find a new species. He failed, but did find a rare German one. He

also developed a second passion, a young woman named Fanny

Owen, who ditched him as soon as she discovered he was more

interested in beetles.

Neither interest did much for his examination preparations, and

he found himself facing a backlog of two years’ work with only two

months to do it. One of the important course books was Evidences of

Christianity by the Reverend William Paley. Darwin was captivated

by its logic and its leftish politics. He scraped a pass and moved on

to his final year. Now he had to read another book by Paley,

Principles of Moral and Political Philosophy – not because of its

orthodoxy, but because students had to learn how to argue against

the book’s assertions, such as the irrelevance of an established

Church to Christianity.

Darwin decided to read around the topic, and chanced upon

Paley’s Natural Theology, which made the case for the divine

creation of living creatures. He was impressed by the book’s clarity,

but he was also aware that many leading scientists and philosophers

found it naive, and this led him to investigate the process that led

to scientific laws, reading Sir John Herschel’s Preliminary Discourse

on the Study of Natural Philosophy. For light reading he scanned the

3,754 pages of Alexander von Humboldt’s Personal Narrative, about

the exploration of South America. From Herschel he learned how to

do science; from Humboldt he learned where to do it. He promptly
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vowed that he would visit the volcanic Canary Islands to see the

famed Great Dragon Tree.

This plan collapsed when his friend Marmaduke Ramsay, who

was going to go with him, died unexpectedly. While Darwin was

trying to work out what to do next, he was offered the post of

gentleman companion to a naval officer, Robert FitzRoy. FitzRoy

had been charged with carrying out a chronometric survey of the

coast of South America – that is, a survey using a marine

chronometer (essentially, a very accurate watch) to determine

longitude. The ship was to be the Beagle, and FitzRoy was worried

because the previous captain had shot himself. Worse, one of

FitzRoy’s uncles had slit his own throat when depressed. So FitzRoy

determined to stave off suicide by taking along someone capable of

intellectual discussion.

This suited Darwin down to the ground, but his father refused

permission, until he received a letter from Darwin’s uncle Josiah,

saying that the trip would be the making of the young man. So off

Darwin went, on what eventually became a five-year voyage round

the world. First landfall was St Jago, a rugged volcanic outcrop of

the Cape Verde Islands, with impressive volcanoes where Darwin

could pursue his geological interests, and fertile valleys where he

could do natural history. He found flatworms in Brazil, fossils in

Argentina and naked savages in Tierra del Fuego. Similarities

between shells on the beach and fossils high in the Chilean

Cordillera convinced him that the Andes must have been pushed

up high above sea level by vast geological forces. But the climax of

the voyage, scientifically speaking, came when the Beagle arrived at

the volcanic Galápagos Islands, which basically were a nest of

volcanoes.

Darwin’s stay there was brief, but it allowed him to collect

specimens from what he quickly realised was very newly formed

land. Many of its native creatures were bizarre: a species of penguin

living on the equator; the only known marine iguanas, which

foraged for algae beneath the ocean’s turbulent waves; the only

known species of cormorant that could not fly; and giant tortoises

up to two metres in circumference. He was amazed by the

spectacular blue-footed boobies, which dived into the sea from a

great height, like avian arrows in search of fishy targets, and he was

intrigued by the mockingbirds, which differed subtly from one

island to the next. Looking more closely, he discovered that they
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formed at least three distinct species: one on Charles Island (now

Santa Maria), another on Chatham Island (San Cristóbal), and a

third on James Island (San Salvador).

He collected a few dull-looking finches and warblers, but found

them rather boring.

The voyage continued to Tahiti, New Zealand and Australia.

Five years and three days after the Beagle departed from Plymouth, a

travel-weary Darwin arrived home. When he walked in through the

door, he found his father eating breakfast, who greeted him without

enthusiasm, remarking, ‘Why, the shape of his head is quite

altered.’

............
Only after his return from the Beagle voyage did Darwin start to

think seriously about what he had seen.

Near the end of the voyage, in Australia, he had made one

major discovery: the origin of coral reefs. Lyell had suggested that

reefs must be built on top of submerged volcanoes, but Darwin

came up with a different idea: coral reefs start out in regions where

the seas are shallow, but then the sea floor slowly falls. The corals

grow faster than the seabed can drop, so the living tip of the reef

remains near the surface. On the basis of this, and his Andes

observations, he was made a Fellow of the Royal Geological Society.

His scientific reputation was made not by evolution, but by

geology.

However, Darwin’s training as a geologist made him aware of

some puzzling aspects of what he had observed. Lyell, who was a

firm believer in divine creation, explained the diversity of living

creatures, and their adaptation to their environments, in terms of

local geological conditions. Darwin was sceptical. The Galápagos

finches, which he had dismissed as uninteresting, were coming back

to haunt him. He had misunderstood them. In fact, he had

misunderstood them so badly that he hadn’t even realised they

were all finches – he thought some were wrens, and others

blackbirds. On his return to England he immediately gave all the

relevant specimens to John Gould, a finch expert at the Zoological

Society. It took Gould only ten days to convince himself that they

were all finches, very closely related, but constituting an
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astonishing twelve distinct species (now considered to be thirteen).

Why so many species on such a small group of tiny islands?

Initially Darwin hadn’t been interested in the question, but now

he began to take it seriously – and it bothered him. For once, his

skills as an observer had deserted him, perhaps for lack of time. He

hadn’t recorded which specimens came from which island. And

he’d assumed that the finches formed huge flocks, which all fed on

the same things. But when he examined their beaks more closely,

he realised this must be wrong. There were many different forms of

beak, suited to different foods.

The Darwin family were Unitarians, which predisposed Darwin

to the belief that God worked only on vast scales of space and time.

In support of this view he wrote2

It is derogatory that the Creator of countless systems of worlds

should have created each of the myriads of creeping parasites

and slimy worms which have swarmed each day of life on land

and water on this one globe. We cease being astonished,

however much we may deplore, that a group of animals should

have been directly created to lay their eggs in bowels and flesh

of others – that some organisms should delight in cruelty . . .

From death, famine, rapine, and the concealed war of nature we

can see that the highest good, which we can conceive, the

creation of the higher animals has directly come.

Mainstream Victorian theologians were no longer in favour of

Paley’s arguments, for similar reasons. If God continually

intervened in His creation, that seemed to suggest that He had

bungled it. Why else keep tinkering? The theist view was being

replaced by a deist one: yes, the Creator set up the universe, along

with its laws, but then He stood back and left it running, to work

out its own destiny according to those laws. And one consequence

of those laws seemed to be that species could change. Darwin had

been keeping a notebook, his Red Notebook. Now he started a new,

secret one, the B Notebook, on the transmutation of species. Slowly

he assembled a long list of puzzles that made much more sense if

species could change. But even if they did change, he still didn’t

know how.

Back in England, Darwin wrote a series of books – two on the

Beagle voyage, one on coral reefs, one on the geology of South

America and a massive series of four huge tomes on barnacles. (He

had been advised to become an expert on some limited range of
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organisms to cement his reputation as a naturalist, and settled on

barnacles.) The barnacles added further weight to the argument

against special creation – there were hundreds of different species,

most of them very similar to many of the others, all minor

variations on the same underlying theme. God’s inordinate

fondness for beetles now seemed to extend to an equally inordinate

fondness for barnacles. Creation of each species, one by one,

seemed absurd. So much neater to create just one, and then let it

. . . change.

............
As Darwin’s ideas on the transmutation of species began to

crystallise, he realised that a simple mechanism might explain how

it happened. The idea was triggered when he read Thomas

Malthus’s 1826 Essay on the Principle of Population. Malthus’s

argument relied on some simple mathematics. He asserted that

populations of living creatures, if their growth is not restrained by

lack of food or predation, grow ‘geometrically’: the population size

at successive instants of time is multiplied by the same fixed

amount. For example, if every pair of finches produces four

surviving adults, then the finch population repeatedly doubles. The

numbers grow very rapidly – the modern term is ‘exponentially’:

2, 4, 8, 16, 32, 64, 128, 256, 512, 1,024, 2,048, 4,096, 8,192

and so on. But Malthus reckoned that the available resources, such

as food supply, grew more slowly: ‘arithmetically’, increasing by the

same fixed amount after each instant of time. For example,

2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32

and so on, where each number exceeds the previous one by 2. The

modern term is ‘linearly’.

Linear growth, even if the number added at each step is very

large, will always be beaten in the long run by exponential growth,

even if the multiplying factor is only slightly larger than 1. So

Malthus deduced that unrestrained growth will always outstrip

resources, and concluded that growth always has limits. The

argument as presented is simplistic, with its reliance on tidy

numerical sequences, but its conclusion is robust. Anything

remotely like exponential growth will eventually beat anything that
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is roughly linear – including growing like some fixed power,

squares, cubes, and so on.

Malthus was interested mainly in the human population, but

Darwin noticed that the same reasoning must apply to animal

populations. Such populations are roughly constant. The number of

blackbirds in a given part of the country may fluctuate from year to

year, but it doesn’t explode. On average, it stays much the same.

Yet each pair of blackbirds produces dozens of offspring. What

keeps population sizes stable? Clearly, as Malthus said, competition

for resources: food, a place to live, mates and, of course, the effects

of predators, another kind of competition. The inevitable result

would be ‘natural selection’. The only creatures that could pass

their characters on to the next generation would be those that bred

. . . and in order to breed, they had to survive to adulthood.

Just as a human breeder might deliberately choose to breed

from a faster horse or a thinner dog, so nature would – must –

unconsciously ‘choose’ whichever adult organisms won the

competition to survive and breed. And that wasn’t a lottery, it

wasn’t a totally random process. Healthy animals would tend to

beat sick ones; not always, but often. Strong animals would tend to

beat weak ones. It might not always be obvious to a human

scientist which strategy was best (a small animal can hide where a

big one can’t, for instance), but nature would carry out the

experiment automatically and find out what worked.

Here was the missing mechanism. It was well known that different

organisms in a given species are not always identical. This process

of natural selection would favour certain differences, but suppress

others. The result would be gradual changes. How far might such

changes lead? Enough small changes, piled on top of one another,

can amount to a big one. A very big one. Big enough, Darwin

thought, to generate entirely new species – given enough time.

Was there enough time? Darwin’s geological background left

him in little doubt.

............
How old is the Earth? This may seem a silly question in a book

about biology, but even the stoutest supporter of evolution accepts

that the process must take a lot of time. Ten thousand years would

be woefully inadequate for humans to evolve from an ape-like
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ancestor – let alone for the ancestor to evolve from fish, and fish to

evolve from microbes.

Convince people that the Earth is a mere ten thousand years

old, and the battle against what some inhabitants of the US Bible

Belt call ‘evilution’ is won. Evolution must be nonsense. So

Creationists now routinely dispute the scientifically established

figure for the age of the Earth, which is about 4.6 billion years.

Until about 150 years ago, the Bible was one of the main

sources of information about the past, so it made sense to try to

deduce the date of creation from its contents. James Ussher,

Archbishop of Armagh, was an intelligent and capable man with a

gift for languages. In 1650 he published the first of two works

devoted to Biblical chronology: Annals of the Old Testament. A

sequel appeared in 1654. In these works he employed Biblical

scholarship to work out the date of creation, and the answer he

came up with was around nightfall on the day before 23 October

4004 BC.3

He was not alone in his endeavours. A decade earlier, John

Lightfoot, using similar methods, deduced that the creation

occurred near the autumnal equinox in 3929 BC. Isaac Newton,

venerated today as one of the principal architects of the Age of

Reason, arrived at a date of 4000 BC. Johannes Kepler, famed for his

discovery of the laws of planetary motion, proposed 3992 BC. There

was a strong consensus that the Earth was about 6,000 years old, so

after 1700 the King James Bible included Ussher’s chronology

among its annotations. It is therefore only to be expected that for

several centuries, well-informed Christians knew that the Bible

stated the Earth’s age as 6,000 years.

As the centuries passed, a series of scientific advances provided

viable alternatives to Biblical scholarship, and made it possible to

date the Earth’s rocks objectively, and with increasing accuracy,

over increasing periods of time. These dates flatly contradicted

Ussher’s chronology.

It took a while for the magnitude of deep time to sink in.

Initially, ten million years was daring, but soon estimates of the

order of a hundred million years became commonplace. There is

now a very strong consensus among virtually all scientists that the

Earth is close to 4.6 billion years old –three-quarters of a million times

as old as proposed by the theological chronologists. That makes

evolution far more plausible.
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Prove that the Earth is young, and evolution is a dead duck.

One consequence is Young Earth Creationism, which maintains,

contrary to a truly gigantic body of scientific evidence, that the

Earth is somewhere between 5,700 and 10,000 years old. Surveys

indicate that about 45% of modern American adults accept this

figure. They also show that most of those who do are low-paid and

poorly educated.4 Bearing in mind that in the United States it is

close to social suicide to admit to agnosticism, let alone atheism,

these figures should be neither surprising nor especially

discouraging to those of us who accept the science.

............
Armed with deep time and natural selection, Darwin now had the

answer to the puzzles in his B Notebook. But as a solid Christian

(albeit a Unitarian, a sect often characterised as believing in ‘at

most one God’) he was uncomfortably aware that what he held in

his hands was theological dynamite. His wife, Emma, was very

religious; he knew she would find his new theories offensive, and

he had no wish to upset her. He had no wish to be seen as

attacking the Church, either. So he did what most of us would do

in such circumstances: he dithered.

He amassed ever more extensive evidence for natural selection.

He listed its weaknesses too: Darwin’s greatest strength was

intellectual honesty. He discussed his ideas with a few trusted

colleagues, among them Lyell and Joseph Hooker. In his head,

Darwin conceived of a huge multi-volume work, so perfect and so

well argued that no sensible person could disagree with it. He might

have tinkered and polished and amended and dithered forever,

were it not for events taking place half a world away, of which he

yet knew nothing.

The agents of those events were a tropical typhoon and a

Victorian explorer named Alfred Russel Wallace. Darwin came from

a wealthy family. Wallace didn’t, and made a living by travelling to

distant and exotic parts, collecting butterflies and beetles and other

exotic creatures, and selling them. These items were popular with

the middle and upper classes in Victorian times, and there were

dealers who specialised in them. Wallace went to the Amazon in

1848, and by 1854 he was in Borneo hunting orang-utans. He was

beginning to think they might represent human ancestors.
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Stuck indoors when a typhoon was dumping rain all over

Borneo, Wallace started playing around with a few ideas that had

suddenly occurred to him about what he called ‘the introduction of

species’. He wrote them up as a scientific article and sent it to the

Annals and Magazine of Natural History. This was a rather

unprestigious publication, but Lyell noticed when it published

Wallace’s paper and told Darwin, since there seemed to be some

similarities with the ideas that Darwin was explaining to his friends.

Another friend, Edward Blyth, also drew it to Darwin’s attention,

writing to tell him that he thought the article was ‘Good! Upon the

whole.’ A worried Darwin got hold of a copy, and wrote back in

relief to say that it was ‘nothing very new . . . it seems all creation

with him.’

So Darwin relaxed. He had a generous nature, and encouraged

Wallace to continue with the work, not realising where that might

lead. Wallace followed the well-meant advice, and soon came up

with a better idea, essentially identical to Darwin’s concept of

natural selection. In June 1858 he sent Darwin a twenty-page letter

outlining the argument, from which it was immediately obvious

that Wallace had come up with a very similar theory, so similar

that Darwin declared that his life’s work was ‘smashed’, adding: ‘If

Wallace had my sketch of 1842, he could not have made a better

short abstract!’

Trying to salvage something from the wreckage, Lyell suggested

that the two men should publish their discoveries simultaneously,

and Wallace agreed. He had no wish to steal Darwin’s thunder; he

hadn’t realised that the great man had been working on anything

remotely related. Since he now knew that Darwin had far better

evidence, and much more material, Wallace did not wish to steal

the limelight.

Spurred on by the worry of being beaten to the punch, Darwin

quickly put together a short version of his own work. Hooker and

Lyell got the two papers inserted into the schedule of the Linnaean

Society. The Society was about to shut up shop for the summer, but

its council fitted in an extra meeting at the last minute. The two

papers were duly read to an audience of about thirty fellows . . . and

we’ve already seen how they were received.

Darwin polished up his essay and changed its title to On the

Origin of Species and Varieties by Means of Natural Selection. On the

advice of his publisher, John Murray, he cut out the ‘and Varieties’.
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The first print run of 1,250 copies went on sale in November 1859

and sold out immediately.

The Wallace–Darwin theory of natural selection is simple –

deceptively so, as will become apparent. The main points are:

1. living creatures differ from one another, even within a given

species;

2. many of these differences can be passed on to offspring;

3. the environment cannot sustain all offspring produced, so there

is competition for survival;

4. the survivors tend to be ‘better’ at surviving than the previous

generation.

The deduction is that species can gradually change; and given

enough time, small changes can combine into large ones.

This, said Darwin, is how new species arise from existing ones.

............
Natural selection is deceptively simple: most attempts to explain

the ideas in non-technical terms, including my own attempt here,

are forced to simplify a very complex process. Often they

oversimplify it. A classic instance is Herbert Spencer’s

characterisation of natural selection as ‘survival of the fittest’.

Another is ‘nature red in tooth and claw’, from Tennyson’s poem

‘In Memoriam A.H.H.’,5 which actually referred to humanity, but

was quickly seized upon by both proponents and opponents of

evolution. A third is the idea, often stated by biologists as a flat

fact, that evolution is random.

Spencer coined his memorable phrase in 1864, in his Principles

of Biology. Biologically, ‘fitness’ is about how well an organism is

equipped to ‘fit into’ its environment, but many people assumed it

was about being healthy and in good physical shape. In addition,

Spencer’s vision was closer to Lamarckism, so the book muddied

already turbid waters. Critics often cite the phrase ‘survival of the

fittest’ as proof that evolution is a ‘tautology’: survival is used to

demonstrate fitness, and then fitness is proposed as the reason for

survival.

There are two mistakes here. First, a tautology is a logical

statement that is unconditionally true; the correct objection should
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be to circular reasoning. For example, it is fallacious to argue that

the existence of life implies that there must be some supernatural

‘living essence’, and then use that essence to explain life. The more

serious mistake is the assumption that Spencer’s dumbed-down

phrase accurately describes the technical concept of natural

selection. This misleadingly suggests that biologists think that

creatures have an innate fitness, and the fitter creature wins. But

evolutionary biologists do not use survival as a demonstration of

fitness and then use fitness to justify survival. What matters is

selection: since creatures compete for limited resources, some survive

and some don’t. The process is a kind of filter, and what matters is

that some organisms pass through it successfully, while others

don’t. And filters do not just allow things to pass through, or block

them, at random: there is a degree of systematic bias. If we don’t

understand in great detail how the filter works, we may not be able

to predict what will pass through and what won’t, but we can still

predict that the distinction will be systematic.6 Organisms don’t

compare their fitnesses to determine a winner. They just compete,

and find out which one wins.

The word ‘compete’ also bears examination. Think of a wood,

populated by foxes, rabbits and owls. Which competitions are the

most significant for evolution? ‘Nature red in tooth and claw’ leads

us to home in on red-toothed foxes, or predatory owls hunting

down innocent rabbits: the obvious competition is between

predator and prey. But which organisms constitute a rabbit’s most

serious competition?

Other rabbits.

Rabbits are in competition with one another for the same

resources, and in the struggle to survive the same dangers. They are

competing for the same food, and trying to escape from the same

foxes and owls.7 The rabbits that win these ongoing competitions

are the ones that will survive to breed, and the abilities that enable

them to do so (if they are of a kind that can be inherited) may pass

to their descendants and similarly improve their survival prospects.

The same goes for foxes, whose main competitors are other foxes,

and for owls, whose main competitors are other owls.

Competition between foxes and rabbits happens as well, and it

also has an evolutionary effect, but on a slower timescale. It leads to

an ‘arms race’ in which, say, rabbits acquire the ability to run faster,
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but foxes evolve to do the same, and the whole cycle goes round

and round, driving both creatures to ever greater efforts.

However, there is a third competition going on here: it is

between foxes and owls. Foxes don’t usually eat owls, and owls

don’t eat foxes – well, maybe baby ones. But they both eat rabbits,

and if the rabbit supply gets too low, owls and foxes can’t avoid

coming up against each other. This competition is indirect; the

participants may not even be aware that their competitor exists. All

they know is that there aren’t enough rabbits around and they’re

going hungry.

Natural selection is not merely a matter of pitting one organism

against another. It happens in the context of the surrounding

environment – the entire local ecosystem. The rabbit population

depends on the plants they eat, the availability of suitable soil to

dig burrows, the amount of low cover to hide in. These things

depend on other, less obvious features of the ecology, such as

insects to fertilise the plants, and fungi and bacteria to condition

the soil. So what evolves is really the entire ecosystem. Yes, the

evolution is driven by what happens to individual organisms, but

the ecosystem determines the context in which they compete.

Mathematical models discussed in Chapter 14 underline this point.

Is evolution random? It’s clearly not predetermined – you can

no more forecast which rabbit will make it through the day than

you can predict whether France will beat Mexico in the World Cup.

But there are clear trends, some events are more likely than others,

and so on. Down at the molecular level, genetic changes can

perhaps be characterised as random. Mutations, genetic changes,

can be caused by chemicals and cosmic rays, which are effectively

random.8 But that doesn’t imply that evolution itself is equally

likely to change in one direction as it is in another, and the reason,

yet again, is natural selection. Depending on the appropriate

context, selection introduces a degree of preference. Some

mutations improve the creature’s survival chances, some decrease

them, and most are neutral.

Let me suggest an analogy. The motion of individual molecules

in water is random, but that doesn’t mean that water is just as

likely to flow uphill as down. The selective effect of gravity leads to

a strong preference for down. But what the water does, in bulk, is

not merely determined by moving downwards. Where it ends up

depends on the landscape in which it flows. Natural selection is
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rather like the force of gravity (though not as strongly selective and

not as easy to characterise independently of its effects). Mutations

are like the random excursions of water molecules. And the

environment is like the landscape.

............
In 1973 Theodosius Dobzhansky, a prominent evolutionary

biologist, wrote an essay with the title ‘Nothing in biology makes

sense except in the light of evolution’.9 Everything that has been

discovered in biology since then – which is an awful lot – has

reinforced that statement. The word ‘theory’ has two very different

meanings, and there is an overwhelming scientific consensus that

in ‘theory of evolution’ this word has made the transition from the

sense of ‘tentative hypothesis’ to the sense of ‘coherent explanation

confirmed by a substantial body of evidence from diverse sources

which has survived innumerable attempts to disprove it’. As Richard

Dawkins has remarked, the everyday term for this sense of ‘theory’

is ‘fact’, and it is mainly a wish to avoid appearing dogmatic that

prevents scientists from employing the same term.

It would hardly be necessary to point this out, were it not for

vocal opposition to evolution by a few fundamentalist religious

groups. If the world was indeed created by God ten thousand years

ago, then the Deity has gone to enormous lengths to fabricate a

massive, interlocking network of natural features, specifically

designed to mislead any intelligent observer into the mistaken

belief that life on Earth has diversified, over billions of years, from

simple beginnings. This view of God as liar seems theologically

improper, and that is the conclusion that Victorian clergy came to

once they had absorbed the scientific discoveries of their age. So did

Dobzhansky, a Russian Orthodox Christian.

The evidence for evolution comes from many different sources.

The variety of these sources, and their independence from one

another, greatly strengthens the scientific case in favour of

evolution, because each new source provides a large number of

potential ways for the theory to be disproved. So far the basic

principle has survived unscathed, but the details of the evolutionary

process have been clarified, and sometimes changed, as new

evidence comes in. The evidence available today is far more
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extensive than what was available in Darwin’s time; it is also more

quantitative and more precise. The main sources are:

. the pliability of the form and behaviour of organisms, evident in

human-induced breeding programmes for dogs, pigeons, horses

and other domesticated animals;

. similarities between existing creatures, suggesting a common

origin;

. the occurrence of the same biochemical components and

systems in many different organisms;

. the fossil record, which reveals coherent sequences of changes

over time;

. the geological record, which confirms the dating of fossil species;

. genetic features of organisms, especially DNA sequences, which

confirm both lines of descent and the timing of changes;

. relations between the distribution of species and current or

historical geographical features;

. observed natural selection in the laboratory and the real world;

. mathematical studies of the effect of selection principles on

changes in complex systems.

............
Evolution’s critics often claim that because we can’t observe the

past, the theory is not scientifically testable. But science is about

inference as well as direct observation. When Haldane was asked

what evidence could possibly disprove evolution, his immediate

response was: ‘Fossil rabbits in the Cretaceous’. Fossils are relics of

living creatures from the past, transformed into and preserved in

the rocks of our planet. Because rocks are often datable, many

fossils can be reliably assigned to specific periods of history.

Fossils provide a rather sparse record of the life forms of the

past, because it is very rare for any individual organism to become a

fossil. However, there have been an awful lot of organisms over the

past few hundred million years, and more than 250,000 different

fossil species have been discovered. The number of individual

known fossils is large (more than three million just from the La

Brea tar pits at Los Angeles, for example) and is increasing rapidly
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with the discovery of new sites, all over the world, and with

improved techniques for locating fossils and analysing them.

Despite the relative rarity of fossils, the record is sometimes very

extensive, with few significant gaps, and it then offers clear

evidence of systematic long-term evolutionary changes. The classic

example is the evolution of the horse, between 54 million years ago

and a million years ago. The sequence begins with a horse-like

mammal a mere 0.4 metres long. This genus was originally given

the poetic name Eohippus (‘dawn horse’), but has since been

renamed Hyracotherium because of the rules of taxonomy, which in

this case managed to deliver a silly result.10 The sequence continues

with Mesohippus, 35 million years old and 0.6 metres long; then

Merychippus, 15 million years old and 1 metre long; then Pliohippus,

8 million years old and 1.3 metres long; and finally (so far) Equus,

essentially the same as the modern horse, 1 million years old and

1.6 metres long.

Taxonomists can track, in great detail, the sequence of changes

that occurred in this lineage of ancient horse ancestors, for example

in the animal’s teeth and hooves. They can also track the timing of

these changes, because rocks can be dated. So now evidence from

geology can be thrown into the mix. In principle it would take only

one fossil species in the wrong stratum of rock to cast doubt on the

evolutionary story – and that is Haldane’s point. In practice it

would take several independent instances, because there might exist

sensible explanations for a few isolated exceptions. The plain fact is

that the succession of rocks, their ages as determined by a variety of

different methods, and the evolutionary sequences of fossils all

agree to a remarkable extent.

A standard objection to the use of fossils to support evolution is

the absence of transitional forms, popularly known as ‘missing

links’. Neither term is terribly satisfactory: in evolutionary biology

there is a sense in which all species are in transition (from their

ancestral species to their descendants), and transitional forms are

not modern ‘links’ but ancient common ancestors. However, the

important question is whether these forms are absent because they

never existed, or because they did exist but we haven’t yet found

any fossils. Evolution predicts the latter – yet another way in which

evolution has predictive power – while its detractors assert the

former.

As more and more fossils have been discovered, more and more
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transitional forms have been found. A major example is the

transition from fish to land animals – tetrapods, creatures having

four limbs instead of fins. The only fossils available to Victorian

palaeontologists were either fish or amphibians, leaving a gap of at

least 50 million years with no transitional fossils in between. But

from 1881 onwards, new fossil discoveries have inserted a whole

series of intermediates between fish and amphibians: Osteolepis,

Eusthenopteron, Panderichthys, Tiktaalik, Elginerpeton, Obruchevichthys,

Ventastega, Acanthostega, Ichthyostega, Hynerpeton, Tulerpeton,

Pederpes, Eryops. Dozens of other comparable gaps have been filled

in the past twenty years, and every year now sees the discovery of

more transitional forms, ever more finely spaced.

One evolutionary critic has remarked that whenever a gap in

the fossil record is filled, it creates two more gaps on either side of

it. This rather desperate excuse is true in a trivial sense, but it

constitutes a serious misunderstanding of the nature of scientific

inference. Each discovery of another transitional form represents a

successful prediction for evolution and a failure for its detractors.

Moreover, the two gaps that are created are significantly smaller

than the one that was there before. A new transitional form is one

more nail in the coffin of special creation. Enough nails will fix the

lid on firmly; it is not necessary to have an unbroken continuum of

them all round the edge.

............
It wasn’t his wish to create controversy, but Darwin had opened

Pandora’s box. As the implications of the Origin struck home, and

even more so those of its successor, The Descent of Man, which

argued that humans and apes are descended from a common

ancestor, hackles were raised. Sensitivities were trampled. Social

convention was outraged.

If your default worldview places humankind at the pinnacle of

creation, with the rest of the universe as a resource for us to exploit,

then the suggestion that people and animals have a lot in common

is hard to accept, and the idea that humans and today’s animals

evolved from common ancestors is anathema. It inevitably led to

snide remarks like, ‘Exactly which ape was your grandfather, Mr

Darwin?’, and unflattering cartoons, many of which would now be

classed as racist.

Profile Books - Maths of Life Data Standards Ltd, Frome, Somerset – 10/2/2011 01 Maths of life Chapters.3d Page 75 of 336

The Origin of Species // 75



From a more dispassionate viewpoint, however, the close

relationship between humans and animals is obvious. We eat like

animals, reproduce like animals, excrete like animals. Our

anatomical features correspond closely to those of many other

members of the animal kingdom. Our skeletons match those of

most mammals virtually bone for bone; only the shapes and sizes

are a bit different. Our brains have a lot in common with those of

mammals, amphibians and reptiles. Our hands are very similar to

those of the great apes, and not so different from those of monkeys

and lemurs.

When a difference of opinion on such matters was just that, the

outcome was pre-empted by social convention. In the

predominantly Christian tradition of the Western world, it was

taken for granted that people are completely different from animals.

The differences, such as our ability to talk, write, compose music or

paint portraits, were emphasised; the similarities (especially those

related to embarrassing bodily functions) were ignored, minimised

or, as a last resort, denied. But as scientific evidence accumulated,

this stance became difficult to maintain. In Victorian England, and

most of Europe, religious people slowly came round to the idea that

the creation story in Genesis is a metaphor, and they accepted the

discoveries of science as insights into God’s creation. Atheists had

no problem anyway. But those who believed in the literal truth of

the Bible painted themselves into an intellectual corner, by tying

their entire belief system to an unconvincing denial of a huge and

ever-growing body of scientific evidence.
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6 In a Monastery Garden
.................................

Today’s academic scientists live or die by their citation ratings –

how many other scientists have referred to their papers in

published research. Bureaucrats love citations – like paper clips, you

can count them. However, there are dangers. In mathematics, some

of the best papers are so well known that no one bothers to

mention them explicitly. But the biggest problem is the time it can

take for the importance of a discovery to become apparent. A case

in point is a paper published in the nineteenth century that created

the entire subject of genetics. The discoveries and ideas that it put

forward have proved absolutely fundamental to our understanding

of living creatures, yet in the 35 years after it appeared in print, it

was cited no more than three or four times.

The paper, written in German, was published in 1865 in an

obscure journal, the Verhandlungen des Naturforschenden Vereines in

Brünn (‘Proceedings of the Natural History Society of Brünn’). The

author, born in Germany, was christened Johann. As a child he

kept bees and worked as a gardener. In 1840 he became a student at

the Philosophical Institute of Olomouc, a city in Moravia, part of

today’s Czech Republic. After a single term at the Institute he fell ill

and took a year out. After finishing his studies, Johann decided to

become an Augustinian priest. He changed his first name to the one

he would use in monastic life: Gregor. His surname was Mendel.

In 1851 the Order sent Mendel to the University of Vienna, and

on his return to the abbey he became a teacher. There, in 1856, he

began a series of 29,000 scientific experiments, breeding peas. It

took him seven years. After peas, he moved on to bees, but with

less success. He bred a strain of bees that had to be destroyed
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because they were so nasty, and he failed to get clear-cut results

because it was difficult to control the queen bees’ choice of mates.

In 1868 he was promoted to abbot, and his scientific productivity

ceased. But what he achieved would eventually trigger biology’s

fourth revolution: genetics.

It was a struggle. Most biologists of the day rejected Mendel’s

theories, mainly because they conflicted with the prevalent belief

that characters passed from parents to offspring by ‘blending’. The

main idea here – if it can be dignified by that word – is that a child

will have a height that is somewhere in between the heights of its

parents, as if the two heights were poured into a mixing-bowl,

stirred together and poured into the child. Height can be replaced

by any other character: weight, strength, size of biceps,

mathematical talent, whatever.

Evidence in support of the blending theory of inheritance was

thin on the ground, while contrary evidence – most of it blindingly

obvious – was widespread. Nevertheless, virtually everyone believed

in blending inheritance. I suspect that one motivation was the

then-popular metaphor of ‘blood’ for inherited characters. Animal

breeders would refer to ‘bloodlines’ to describe the family trees of

dogs or horses. Even today we speak of someone having ‘royal

blood’, or being a ‘blood relative’. This metaphor can be traced back

to ancient Greece, and became known as pangenesis (pan¼whole,

genesis¼birth, origin). Even Darwin fell into the trap: when he wrote

the Origin, it was pangenesis that he had in mind as the mechanism

of heredity.

However, blending inheritance makes no sense, as became

apparent once blending was confronted by science. Between 1869

and 1871, Darwin’s cousin Francis Galton, one of the pioneers of

statistics, performed a long series of experiments to test the theory

of pangenesis. His approach was disarmingly direct: he transfused

blood from various types of rabbit into other types, then he bred

them and observed the characters of the resulting offspring. He

found no indication of any substance in a rabbit’s blood that

determined its offspring’s characters, and pangenesis was rapidly

abandoned by most competent biologists. But before Galton,

pangenesis was simply there – a cloud of unstated and unquestioned

assumptions floating around in the heads of biologists, breeders and

the general public. If you were really clever, you could find cunning

ways to prop it up, just as an experienced flat-earther can always
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win a debate, point by point, by invoking unorthodox theories of

optical refraction, weird geometry – or, when desperate,

conspiracies.

Against this background of unquestioning acceptance of

pangenesis, Mendel’s results stood out like a sore thumb. But

instead of trying to understand them, or repeating and extending

his experiments, it was so much simpler to ignore them – assuming

you had even read the paper. Darwin hadn’t. If he had known of

Mendel’s work when he wrote the Origin, he would have made

some big changes.

............
At first sight, Mendel’s experiments do not appear terribly

revolutionary. All he did was breed pea plants and compare the

characters of the new generation with those of the previous one.

But what he found was potentially explosive, and eventually, after

his death, it detonated with a bang that can still be heard – at least,

by anyone who doesn’t stuff their head with nonsense in the hope

that it will plug their ears.

Mendel’s paper languished, unread and unappreciated, until

about 1890, thirty years after the publication of the Origin. It was

rediscovered by two botanists, Hugo de Vries and Carl Correns.

Mendel’s discoveries hinge on some simple numerical

relationships that he observed when breeding pea plants. The basic

idea was straightforward: focus on various specific characters, cross-

fertilise a plant that has a particular version of that character with

another plant, one that has either the same version or a different

one, and see what the corresponding character is in the next

generation. Cross-fertilisation, or cross-breeding, means that pollen

from one plant (I’ll call this the ‘father’) is used to fertilise the other

one (the ‘mother’). Plants are ideal for this kind of experiment,

because the scientist can paint pollen from the father directly onto

the reproductive organs of the mother, which makes it easy to

control the line of descent. Not so easy in angry bees!

One of the first characters that Mendel studied was the colour of

the flower: white or purple. The first thing that struck him was that

these were the only colours that appeared. There were no signs of

blending, no pale purple or purplish-white flowers. No matter how

many times he cross-bred the pea plants, their flowers remained
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resolutely either white or purple. The theory of blending

inheritance didn’t fit the evidence, so Mendel set out to discover

what really happened.

It might seem obvious that if you cross two ‘white’ plants – that

is, ones with white flowers – you should always get white plants,

and ditto for purple. But that assumption smacks of blending, and

it’s wrong. Mendel found that white plus white always gave white,

but purple plus purple could give either colour. So it wasn’t a

simple case of two distinct ‘races’ of pea plants, whose offspring

were the same colour as the parents. It was more complicated. In

fact, there seemed to be three different outcomes when crossing

purple with purple:

. all the offspring are purple;

. three-quarters of the offspring are purple and the other quarter

are white; or

. half the offspring are purple and half are white.

In contrast, a white–purple cross could behave like the first two of

these possibilities, but the third, and intuitively the most natural,

didn’t happen. The proportions of different outcomes – a half, a

quarter, three-quarters – weren’t exact; they varied from one

experiment to the next. But the observed data fitted these

proportions well.1

What was going on? An important step towards the answer is to

select the plants you cross-breed, which simplifies the possible

results. Say that a particular character ‘breeds true’ if it reappears in

all offspring. Breeding true depends on both parents, but by storing

some of their seeds and using the others to grow a new generation,

and then cross-breeding those, you can sort out which seeds came

from plants that bred true, and use those plants’ remaining seeds in

another experiment.

It now turns out that if you cross a pure-bred white plant with a

pure-bred purple one, the result is always purple. However, if you

pick two of the plants from that new generation, and cross-breed

those, then you always get roughly three-quarters purple and one-

quarter white in the succeeding generation. This is bizarre – it’s

almost as if the plants have some sort of ‘memory’ of past

generations. And in a sense, they do.

You can imagine poor Mendel, puzzling over his observations,
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trying to find a sensible explanation. Eventually he realised that

everything made sense if the character ‘colour’ was determined not

by one genetic factor in any given plant, but by two. One factor

would be inherited from the father, the other from the mother.

What these factors were, physically, was a mystery. But the

numbers, the mathematical patterns, strongly suggested that they

must exist.

Suppose that colour is determined by unspecified factors that

can be either W or P – white or purple – and that each plant has

two of them. The possible pairs are WW, WP and PP. We consider

PW to be the same as WP: what counts is the combination of

factors, not the order in which they are written down.2

When two plants are cross-bred, the offspring inherits one factor

from each parent. If both factors are identical – WW or PP – then it

makes no difference which of the two is inherited. These are the

‘true-breeding’ plants. But suppose that WP breeds with, say, PP.

Then the offspring can inherit either W or P from the first parent,

but must get a P from the second. So there are two outcomes: WP

or PP.

The mathematics involved here is combinatorics: how different

mathematical objects can combine – here, the symbols W and P.

But in this case you don’t need to know any combinatorics to figure

out the answer using ‘bare hands’:

. If we cross-breed WW with WW, then the only possibility is

WW.

. If we cross-breed PP with PP, then the only possibility is PP.

. If we cross-breed WW with PP, then the only possibility is WP.

. If we cross-breed WW with WP, then there are two possibilities:

WW and WP.

. If we cross-breed PP with WP, then there are two possibilities:

PW (¼WP) and PP.

. If we cross-breed WP with WP, then there are four possibilities:

WW, WP, PW and PP. But PW¼WP, so the four possibilities

reduce to three.

What about the proportions that Mendel observed? Those clinch

the argument. To see why, it helps to draw a diagram, known as a

Punnett square after the British geneticist Reginald Punnett, who

invented it around 1900. I’ll look at WP and WP; this is one of the
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most complicated cases, but more typical and therefore easier to

understand.

The top row in Figure 13 shows the two factors (W and P)

present in the mother; the left column shows the two factors (again

W and P) present in the father. The four squares show the resulting

combinations (WW, WP, PW, PP) when particular factors are

present in the offspring. The usual convention is to put the factor

derived from the father first. We’ve seen that the order doesn’t

affect the character of the resulting plant, but it helps to keep the

mathematics straight.

Fig 13 Punnett square showing how WP cross-breeds with WP.

I’ve coloured some of the big squares white and others grey:

these represent the colours of the flowers of the corresponding

plants, with grey standing for purple. I’ve also broken with tradition

by attaching rectangular tags in the top corner: these represent the

colours of the parents. The shading tells us that WW gives white,

whereas WP, PW and PP give purple. The idea – very simple, like all

good ideas, and one of Mendel’s great insights – is that W and P

‘vote’ on the colour, but if W tries to contradict P, then P wins. In

the genetic jargon, W is recessive and P is dominant.

It is this voting rule that makes mixed cases like WP select one

of the two colours found in the parents, instead of somehow

blending them, or doing something else. In principle, the ‘purple

wins’ voting rule is just one possible way to assign a colour to a

plant with mixed factors; many others can be conceived. This

method is very neat and simple, and it works for the colours of pea

plants. However, biology being what it is, the more geneticists

investigated such rules, the more alternatives they discovered.

Ironically, some amount to blending.

In Figure 13 three of the squares are grey (purple flowers) and

only one is white (white flowers). This 3 : 1 proportion of purple to

white is exactly what Mendel found in some of his experiments. It

suggests that the numerical regularities Mendel observed in the
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proportions of plants with various characters must have a statistical

explanation. The numbers are evidence about the probabilities of

various outcomes.

Now another area of mathematics has joined the party,

alongside combinatorics: probability theory. This is one of the

major branches of the subject, the mathematics of uncertainty. It

originated in questions about gambling; the first textbook was Jacob

Bernoulli’s Ars Conjectandi in 1713. I like to translate this as ‘The Art

of Guesswork’, but a more faithful translation is ‘The Art of

Conjecture’. Bernoulli defined the probability of some event to be

the proportion of times that it happens, in the long run, over large

numbers of trials. This fits with intuition. For example, if we roll a

fair die, then each face – 1, 2, 3, 4, 5, 6 – ‘ought to’ come up

roughly the same number of times. If 6 kept turning up more often

than 2, the die wouldn’t be fair.

This is fine as a working definition, but it entails an assumption:

that what happens in the long run is representative. However, it is

certainly possible to throw a hundred 6’s in succession with a fair

die. Bernoulli proved a mathematical theorem, the law of large

numbers, which shows that exceptions of this kind are extremely

unlikely. Later, mathematicians put the whole subject on a sound

logical basis by stating an explicit list of axioms: properties that any

notion of probability must satisfy. The law of large numbers then

becomes a theorem, a logical consequence of the axioms, and it lets

us calculate probabilities combinatorially – by counting. So we can

calculate the probability of a purple flower by counting how many

combinations of factors give purple, and dividing by the total

number of combinations: here 3 divided by 4.

Mendel’s scheme for heredity combines characters from both

parents while avoiding blending. It treats both father and mother in

the same way. The father has two factors, but contributes only one

to the offspring; ditto for the mother. In each case we have to

choose one factor from two. Suppose this is done at random, just

like tossing a coin: heads, one factor, tails the other. This implies

that each factor from the father is equally likely to be chosen, and

similarly for the mother. So each separate combination in the

Punnett square is equally likely, having probability 1/4. Since there

are three grey regions out of a total of four, we expect 3/4 of the

plants to be purple. Since there is only one white region, the

remaining 1/4 should be white. So the combinatorics of the two
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symbols W and P, subject to the voting rule ‘P wins if present’,

represents the observed frequencies of the two colours – provided

we choose one factor from each parent at random with equal

probabilities.

Similar calculations explain the proportions that Mendel

observed in other cases. The random aspect of the process explains

why Mendel’s observed proportions were not exact fractions like 3/4

and 1/4. In random processes there is always a degree of ‘scatter’,

when things don’t behave exactly like the average case, which is

what the probabilities reflect. For example, if you toss a coin four

times in a row, then the ‘average’ or ‘expected’ result is two heads

and two tails. However, the actual result may be anything from four

heads to four tails, and the average case happens less than half the

time.

Mendel didn’t stop when he had his great insight. He devised

methods to test this hypothesis. The trick was to remove the

annoying plants that produced different colours, by breeding

several generations and discarding any plants whose offspring were

not all the same colour. Having identified particular plants that

bred true, Mendel could go back to his store of seeds, and use the

seeds from those plants to grow new ones which he could then

cross-breed in various ways. After a few generations had passed,

clear patterns set in, and they supported his theories.

............
To Mendel, genes were mysterious ‘factors’, and he did not know

where they were located in the organism, or what they were. The

answer emerged from studies of cell division. A cell is not a simple

bag of chemicals, but a highly complex, organised structure –

organised enough, and complex enough, to reproduce. It’s an

amazing trick to copy a cell, but that pales into insignificance

compared with the copying of an entire organism. This process,

fundamental to complex life, has piggybacked itself on a special

kind of copying process for cells.

Prokaryotes reproduce by splitting into two copies: this process

is called binary fission. Eukaryotes also split into two copies, but

because such cells are more complex, their division is also more

complex. Additionally, eukaryotes are usually capable of sexual

reproduction, in which the offspring has genetic contributions from
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two (or for a few organisms like yeast, possibly more) parents;

Mendel’s pea plants are an example. For sexual species, creation of

the relevant germ cells (sperm and eggs) involves this second kind

of cell-division, called meiosis.

For a long time after Mendel had inferred the presence of

genetic ‘factors’ in plants, no one knew the physical (that is, we

now realise, molecular) basis of heredity. When artificial dyes

became available, it was discovered that thin sections of cells could

be stained to reveal hidden structures under the microscope.

Among them were puzzling features known as chromosomes –

coloured bodies. Prokaryotes had a single chromosome, forming a

loop attached to the cell wall. Eukaryotes kept their chromosomes

inside the cell nucleus, and each organism had a particular number

of chromosomes – 46 in humans, for instance. The chromosomes

were shaped roughly like an X, and came in many different shapes

and sizes.

Chromosomes were somehow involved in cell division, because

an early step in the division of both prokaryotes and eukaryotes

involved making copies of them. With this as a clue, biologists

began to suspect that chromosomes were the cell’s genetic material.

Theodor Boveri and Walter Sutton independently came up with this

idea in 1902, and performed a series of experiments to test it.

Boveri worked with sea urchins, and showed that unless all

chromosomes were present, the organism failed to develop

correctly. Sutton focused on grasshoppers, and made the crucial

discovery that chromosomes came in pairs, one member of each

pair derived from the father, the other from the mother. These pairs

surely must be Mendel’s factors.

This proposal remained controversial for about ten years, but in

1913 Eleanor Carruthers showed that chromosomes combined

together independently, which was consistent with the numerical

ratios that Mendel had observed. For example, the 46 chromosomes

in a human come in 23 pairs, but germ cells contain only one

member from each pair (see later). This comes from either the

father or the mother, and the choice is made randomly and

independently for each pair. The clincher came two years later,

when Thomas Hunt Morgan carried out definitive experiments on

the fruit fly Drosophila melanogaster. He showed that genes

associated with regions of the chromosome that are very close

together tend to be associated in descendants: either they have both
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or they have neither. This biasing effect slowly weakens as the

regions get further apart.

In the binary fission of a prokaryote, the first step is to make a

copy of the single loop-shaped chromosome. After that, the cell

grows in size. The two copies of the chromosome attach themselves

to the cell membrane. Then the cell grows longer, separating the

chromosomes. Finally, the cell membrane grows inwards, eventually

splitting the cell so that the chromosomes end up in distinct

halves. The end result is two copies of the original cell, more or less

identical to it, and in particular having the same genetics. (This is

not quite true, because copying errors can occur, but I’ll leave that

for later.)

............
The reproduction of a eukaryote cell is more complicated, and is

known as cell division. It can happen in two different ways: mitosis,

in which the daughter cells are also able to reproduce, and meiosis,

in which they turn into gametes, the basic units of sexual

reproduction. In humans, these are sperm cells in the male and ova

(eggs) in the female.

Mitosis begins in the nucleus of the cell. The first step, again, is

to make a spare copy of the cell’s genetic material. In eukaryotes

this is packaged into several chromosomes, so each chromosome

must be copied. This is generally done for all the chromosomes at

the same time, rather than taking them in turn. Then the pairs of

chromosomes are pulled apart into two sets, each containing one

chromosome from each identical pair, while the nucleus divides

into two parts, each containing one set of chromosomes. While this

is going on, the cell’s component organelles, such as mitochondria,

are also duplicated, by processes that closely resemble binary fission

in prokaryotes. Finally, the cell membrane grows inwards and splits,

in a way that ensures that each daughter cell contains its fair share

of all of these components – in particular, one nucleus.

This sequence is typical but not unique: the details of mitosis

are different in different organisms. Mitosis is carefully

choreographed; biologists distinguish five successive stages (see

Figure 14). The mother cell’s duplicated contents must be sorted

into two separate sets. The dividing cell does this using

microtubules, long molecules that normally form the cell’s
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‘skeleton’ and act like ropes that can winch the various organelles

into their correct positions.

Each organelle behaves rather like a prokaryote; in particular, it

reproduces by binary fission. This provides a clue to the origin of

eukaryote cells: they are, to some extent, colonies of once separate

prokaryotes, which have evolved to cooperate inside a larger unit,

the eukaryote cell. This idea is called the endosymbiotic theory. It

was first proposed in 1905 by the Russian Konstantin

Mereschkowski, who pointed out that the chloroplasts in plants,

which contain their chlorophyll, divide in a manner that is

strikingly similar to the division of cyanobacteria, which are

prokaryotes. In the 1920s, Ivan Wallin made a similar proposal for

mitochondria. These suggestions found little favour until the 1950s,

when it was discovered that these and other organelles contained

their own DNA, separate from the main genome of the cell. In 1967

Lynn Margulis provided further evidence for the idea that eukaryote

cells arose as a kind of symbiosis among many different

prokaryotes, incorporated into the evolving cell in a series of steps.

............
Prokaryote reproduction is refreshingly direct: an organism divides

into two organisms. In eukaryotes, the reproduction even of cells is

less direct, and the reproduction of organisms is very indirect.

Eukaryotes make two copies of the genetic information in certain

cells of the organism, and then build a new organism from scratch

using that information. Reproducing a prokaryote is like breaking a

piece of chalk in half to get two pieces of chalk. Reproducing a

eukaryote is like making a blueprint of a car, photocopying the

blueprint and using that copy to manufacture a new car – with the

extra twist that the blueprint was stored in the glove compartment
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of the original car, and its copy is placed in the glove compartment

of the new car.

The process that initiates the copying of genetic information is

meiosis. This follows roughly similar lines to mitosis, but it has

eleven stages instead of five. The most important difference is that

the chromosomes are not duplicated, but split apart. In organisms

that reproduce sexually, the chromosomes normally come in pairs –

one inherited from the father, one from the mother. In meiosis

these pairs randomly swap their genetic material, a process known

as recombination and the main source of genetic variation within a

population. The modified pairs are separated. The end result is a set

of four cells, each containing half of the normal complement of

chromosomes.

Unlike mitosis, meiosis is not a cycle – at least, not in a single

organism. It creates germ cells, and having done so, it stops. The

germ cells do very little until two adult organisms, of opposite

sexes, do what comes naturally and fertilise an ovum with a sperm.

At this point, the two half-sets of chromosomes reconstitute a

complete set. The fertilised egg starts to develop, and grows to form

the juvenile stage of the same type of organism. In short, two adults

have a baby.

If you think of an organism as a cake, then mitosis cuts the cake

into two pieces. Meiosis copies the recipe for the cake and tucks it

away in a drawer, to be used when required to bake a new cake. But

these cakes can grow, and the recipe is tucked away inside the cake.

Because meiosis involves recombination, the child’s genome is a

mixture of the genomes of its parents – part random, part

systematic. In humans, the child is (normally) endowed with the

correct 23 pairs of chromosomes. Each pair consists of one

chromosome from the father and a corresponding one from the

mother. One member is donated by the sperm, the other by the

egg. In 22 of these pairs the two chromosomes concerned have the

same overall structure, the same sequence of ‘genes’, but they may

differ in the choices made for any particular gene. For instance,

human hair comes in a variety of colours: brown, black, auburn,

and so on. The colours are caused by pigment proteins called

eumelanin and pheomelanin. Eumelanin can occur in two forms:

brown and black. Pheomelanin is pink or red. Proteins are made by

genes, and different choices of the appropriate genes lead to

different colours of hair.
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Considering how obvious hair colour is, and its long-recognised

relation to heredity (‘she’s got her mother’s hair . . .’) we don’t yet

know precisely which genes determine hair colour or how they do

it. A popular theory is that there are two genes: one in which

brown is dominant and blond is recessive (like purple/white for

peas), and another in which suppressing red colour is dominant

and red is recessive. But it doesn’t explain the full variety of human

hair colours.

The 23rd chromosome pair is different: it contains the sex

chromosomes, which determine the sex of the child. In mammals

(and more) the female sex chromosome X is much larger than the

male Y. Females have the pair XX, males the pair XY. The presence

of two X’s ensures that the set-up is stable under reproduction: the

same possible pairs XY and XX are repeated in the offspring,

because the child must get an X from its mother. Errors can occur;

in particular, a child may have three sex chromosomes rather than

the normal two.

One member of each pair of chromosomes comes from the

father, the other from the mother, with possible genetic differences.

This is the molecular explanation for Mendel’s observation that the

only sensible way to explain the results of his experiments was to

assume that any given character resulted from two ‘factors’, one

from each parent. This process offers one way to combine genetic

‘information’ in new ways, while retaining its overall organisation:

it allows reproduction without exact replication, providing a source

of genetic diversity. This in turn opens the door to evolution – in

fact, it makes some kind of selective filtering of organisms pretty

much inevitable, since it provides a source of heritable variation.

The most intriguing feature of this process, however, is that

there is a second, more drastic, source of genetic variation:

recombination. A sperm cell from the father does not contain one

or other of his chromosome pairs. If it did, then it would be either

a copy of the corresponding chromosome from his father, or the

one from his mother. Instead, they contain a jumbled-up crossover

of both pairs: part of his father’s chromosome, with the gaps filled

by the complementary pieces from his mother’s.

Without recombination, separating chromosome pairs into

halves and then putting two halves together – one from the father,

one from the mother – would be a way to change how

chromosomes are paired, but it wouldn’t alter the genetic
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information inside individual chromosomes. This would be a rather

feeble way to mix up the genetics. Recombination means that genes

get modified within chromosomes, a far more drastic way to alter

the genetic make-up. A curious consequence of this two-step

mixing process is that the most significant differences between the

child’s genes and those of its parents arise by jumbling up what the

parents inherited from the grandparents.
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7 The Molecule of Life
.................................

DNA is now a cultural icon. Scarcely a day goes by without some

company or person claiming on television or in the newspapers

that some activity or product is ‘in their DNA’. It is hailed as ‘the

molecule of life’ and ‘the information needed to make an

organism’. It is linked to new cures for diseases, the ‘Out of Africa’

theory of the spread of early humanity across the globe, and

whether, tens of thousands of years ago, some ancestors of modern

humans had sex with Neanderthals (they did).

At times, DNA seems to be accorded almost mystical

significance. We are often told that someone is having a child ‘in

order to pass on his (or her) DNA’, or perhaps ‘to pass on their

genes’. Maybe today some people genuinely have children for those

reasons, but for hundreds of thousands of years people have been

having children because they wanted to, for personal reasons, or

because they couldn’t avoid it. Their genes got passed on anyway,

along with their DNA, as a vital part of the process . . . but that

wasn’t the reason. It can’t have been. They didn’t know they had

genes.

Passing on genes or DNA can be viewed as an evolutionary

reason for having children, one that helped instil in us a strong

drive to reproduce despite the dangers of childbirth, but we should

not confuse human volition with the mechanistic workings of

biological development and natural selection. That confusion is a

symptom of DNA as icon, something with almost magical

significance. But after decades of telling the public that working out

the human DNA sequence would lead to cures for innumerable

diseases, or allow scientists to engineer new creatures, biologists
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should hardly be surprised when members of the public take these

claims seriously.

There is no doubt that DNA is important. The discovery of its

remarkable molecular structure was probably the biggest scientific

breakthrough of recent times. But DNA is only one part of a far more

complex story. And however magical it may seem, it doesn’t work by

magic.

............
Humanity’s tortuous path to the chemical nature of the gene, and

the beautiful geometry of the molecular carrier of heredity, took

more than a century.

In 1869 a Swiss doctor, Friedrich Miescher, was engaged in a

very unglamorous piece of medical research: analysing pus in

bandages that were being discarded after use in surgery. He would

have been amazed had he known that he was opening the door to

one of the most glamorous areas of science that there has ever

been. Miescher discovered a new chemical substance, which turned

out to originate inside the nuclei of cells. Accordingly, he called it

nuclein. Fifty years later, Phoebus Levine made inroads into its

chemical structure, showing that Miescher’s molecule was built

from lots of copies of a basic unit, a nucleotide made from a sugar,

a phosphate group and a base. He conjectured that the full

molecule was made from a moderate number of copies of this

nucleotide, attached to one another by the phosphate groups, and

repeating the same pattern of bases over and over again.

When more had been discovered about his new molecule, it was

named deoxyribonucleic acid,1 which we all know by the acronym

DNA. It was a gigantic molecule, and the techniques available then

would never be able to reveal its structure – the atoms it contained,

and how they were bonded to one another. But two decades later,

the technique of X-ray diffraction was coming into use, and it

proved to be just the ticket.

Light is an electromagnetic wave, and so are X-rays. When a

wave encounters an obstacle, or passes through a series of closely

spaced obstacles, it appears to bend. This effect is called diffraction.

The exact mechanism depends on the mathematics of wave

interference. The basic principles were discovered by the father-and-

son team of William Lawrence Bragg and William Henry Bragg in

Profile Books - Maths of Life Data Standards Ltd, Frome, Somerset – 10/2/2011 01 Maths of life Chapters.3d Page 92 of 336

92 // Mathematics of Life



1913. The wavelength of X-rays is in the right range for them to be

diffracted by the atoms in a crystal.

There are mathematical techniques for reconstructing the

atomic structure of the crystal from the diffraction pattern that it

produces. One of them is Bragg’s law, which describes the

diffraction pattern created by a series of equally spaced parallel

layers of atoms, a particularly simple type of crystal lattice. The law

can be used to deduce the spacing and orientation of such layers

within a crystal. The mathematical concept that provides all of the

fine details about how the atoms are arranged is the Fourier

transform, introduced by the French mathematician Joseph Fourier

in the early 1800s in a study of heat flow. Here the idea is to

represent a periodic pattern in space or time as a superposition of

regular waves of all possible wavelengths. Each such wave has an

amplitude (how large the peaks and troughs of the wave are) and a

phase (determining the precise positions of the peaks).

The main goal of X-ray diffraction is to find the electron density

map of the crystal – that is, the way its electrons are distributed in

space. From this, its atomic structure and the chemical bonds that

hold the atoms together can be worked out. To do this,

crystallographers observe the diffraction patterns produced by a

beam of X-rays passing through a crystal. They repeat these

observations with the crystal aligned at many different angles to the

beam. From these measurements they deduce the amplitude of each

component wave in the Fourier transform of the electron density.

Finding the phase is much harder; one method is to add heavy

metal atoms, such as mercury, to the crystal, and then compare the

new diffraction pattern with the original one. The amplitudes and

phases together determine the entire Fourier transform of the

electron density, and a further ‘inverse’ Fourier transform converts

this into the electron density itself. So, if you have an interesting

molecule and can persuade it to crystallise, you can use X-ray

diffraction to probe its atomic structure. As it happens, DNA can be

made to crystallise, though not easily. In 1937 William Astbury

used X-ray diffraction to confirm that the molecule has a regular

structure, but he could not pin down what that structure was.

In the meantime, cell biologists had been figuring out what

DNA did. There was certainly a lot of it about, so it ought to have

some important function. In 1928 Frederick Griffith was studying

the bacterium then called Pneumococcus, now Streptococcus
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pneumoniae, a major cause of pneumonia, meningitis and ear

infections. The bacterium exists in two distinct forms. Type II-S is

recognisable by its smooth surface, a capsule that protects it from

the host’s immune system, giving it time to kill the host. Type II-R

has a rough surface – no capsule, hence no protection, so it

succumbs to the host’s immune system. Griffith injected live rough

bacteria into mice, which survived. The same happened when he

injected dead smooth bacteria. But when he injected a mixture of

these two apparently harmless forms, the mice died.

This was surprising, but Griffith noticed something even more

surprising. In the blood of the dead mice, he found live smooth

bacteria. He deduced that something – he didn’t know what, and in

the time-honoured terminology of biology he gave it a vague name,

the ‘transforming principle’ – must have passed from the dead

smooth bacteria to the live rough bacteria. The explanation came in

1943, when Oswald Avery, Colin MacLeod and Maclyn McCarty

showed that Griffith’s ‘transforming principle’ was a molecule,

DNA. The DNA of the dead smooth bacteria was somehow

responsible for the existence of the protective capsule, and it had

been taken up by the live rough ones – which promptly acquired

their own capsules, and in effect turned into the smooth form.

Presumably, the rough form does not have that particular type of

DNA – though it does have its own DNA. The Avery–MacLeod–

McCarty experiment strongly suggested that DNA was the long-

sought molecular carrier of inheritance, and this was confirmed by

Alfred Hershey and Martha Chase in 1952, when they showed that

the genetic material of a virus known as the T2 phage is definitely

DNA. The experiment also suggested that superficially identical

molecules of DNA can be subtly different from one another.

The race was now on to determine the exact molecular structure

of DNA. As so often happens in science, the key results came in a

series of steps, not all of which were recognised to be significant

when they were first discovered. It was already known from Levine’s

work that DNA was made from nucleotides, and each nucleotide

was made from a sugar, a phosphate group and a base. It now

transpired that there were four distinct bases: adenine, cytosine,

guanine and thymine – all small, simple molecules (see Figure 15).

Profile Books - Maths of Life Data Standards Ltd, Frome, Somerset – 10/2/2011 01 Maths of life Chapters.3d Page 94 of 336

94 // Mathematics of Life



Fig 15 The four DNA bases. Left to right: Adenine, cytosine, guanine, thymine.

How did these four bases sit inside a complete DNA molecule?

An important – but initially baffling – clue was found by the

Austrian biochemist Erwin Chargaff, who had fled from the Nazis to

the USA in 1935. Chargaff made careful studies of nucleic acids,

including DNA, and in 1950 he pointed out a curious pattern.

Table 4 shows some of his data for how frequently each base occurs

in the DNA of various organisms, expressed as a percentage of the

total number of bases.

Table 4 Some of Chargaff’s data on the percentage of the four
bases in the DNA of various organisms.

Organism %A %T %G %C

Human 29.3 30.0 20.7 20.0

Octopus 33.2 31.6 17.6 17.6

Chicken 28.0 28.4 22.0 21.6

Rat 28.6 28.4 21.4 20.5

Grasshopper 29.3 29.3 20.5 20.7

Sea urchin 32.8 32.1 17.7 17.3

Wheat 27.3 27.1 22.7 22.8

The numbers vary considerably from species to species – A occurs in

29.3% of humans, but 32.8% of sea urchins, for instance. However,

there are some clear patterns. One is known as Chargaff parity rule

1. In each organism listed (and in many others), the percentages of

A and T are almost equal, and the same goes for G and C. However,

those of A/T can differ considerably from G/C. There is also a

Chargaff parity rule 2, whose statement involves knowing (as we

now do) that DNA consists of two intertwined strands. This states

that the same equalities of percentages hold on each strand

separately. In addition, Wacław Szybalski noticed that usually –

though not always – the percentage of A/T is greater than that of

G/C.

These three rules refer only to the overall percentages of the

four bases in bulk DNA. They do not tell us – not directly – about
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the positioning of the bases within the molecule. We still do not

know why Chargaff parity rule 2 and Szybalski’s rule hold, but

Chargaff parity rule 1 has a very simple explanation, which was one

of the clues that led Crick and Watson to the famous double helix.

They noticed that guanine and cytosine naturally join together

using three hydrogen bonds, and similarly adenine and thymine

join up using two hydrogen bonds (the dotted lines in Figure 16).

Moreover, the two resulting pairs are chemically very similar – they

have almost the same shape, the same size and the same potential

for joining up with other molecules in the DNA structure.

Fig 16 How bases pair up in DNA. The two joined pairs have almost identical

shapes and sizes.

It was as though Chargaff had analysed a huge consignment of

cutlery and crockery, and found that the percentages of knives and

forks were the same, and similarly for cups and saucers. What might

seem coincidence for the entire consignment made immediate

sense if it were made up of packages each consisting either of paired

knives and forks or paired cups and saucers. Then the percentages

would match exactly, and they would match in every part of the

consignment, not just in the overall totals. Similarly, if Crick and

Watson were right, Chargaff parity rule 1 would be an immediate

consequence. Not only were the percentages equal in bulk DNA,

but the bases were arranged in matching pairs – like knives and

forks.

This simple observation suggested that the DNA of organisms

was made from these base pairs. When considered alongside other

known features of the molecule, and an X-ray diffraction pattern

obtained by Maurice Wilkins and Rosalind Franklin, it suggested a

dazzlingly simple idea. DNA was a huge stack of base pairs, piled

one on top of the other, held together by other parts of the

molecule such as phosphate groups. The chemical forces between
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the atoms caused each successive base pair to be twisted by a fixed

amount, relative to the one beneath. The base pairs were arranged

like the slabs of a spiral staircase – or more accurately, two

intertwined spiral staircases. The mathematical term for the shape is

‘helix’, so DNA was a double helix.

Watson’s book of the same name told the story, warts and all,

including his view of the difficulties encountered when trying to

obtain access to Franklin’s data, and how he and Crick dealt with

them. By his own admission, this was not the pinnacle of scientific

ethics, but was justified by the pressing need to sort out the

structure before Nobel prize-winner Linus Pauling beat them to it.

The story had a tragic ending: Franklin died of cancer, while Crick

and Watson (and to a lesser extent Wilkins) got the glory.

When Crick and Watson published the double-helix structure of

DNA in Nature in 1953, they pointed out that the occurrence of

bases in specific pairs suggested an obvious way for DNA to be

copied – which was necessary both for cell division and to transmit

genetic information from parent to offspring. The point is that if

you know one half of a base pair, you immediately know what the

other half is. If one half is A, the other must be T; if one half is T,

the other must be A. The same goes for G and C. So you could

imagine some chemical process unzipping the two helical strands,

pulling them apart, tacking on the missing half of each base pair

and coiling the two resulting copies back into double helices.

If you think about the geometry, it is clear that this process

can’t be straightforward, and may not be a literal description. The

strands will get tangled up for topological reasons – try separating

the strands of a length of rope and you’ll soon see why.

Biochemists now have strong evidence that the actual process

involves several other molecules, types of enzyme, whose structure,

intriguingly, is also coded in the organism’s DNA.2 Two of these

enzymes, a helicase and a topoisomerase, unwind the double helix

locally (Figure 17, see over). Then missing halves of the base pairs

in the two separated strands are reconstituted, but not quite

simultaneously. One strand leads and the other lags, probably

because that makes room for the necessary molecular machinery to

gain access and do the job. Another enzyme called DNA polymerase

then fills in the matching pairs for the leading strand copy, while a

second DNA polymerase does the same for the lagging strand. DNA

polymerase makes its copies in short chains called Okazaki
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fragments. Then yet another enzyme worker, DNA ligase, joins the

Okazaki fragments together.

You can see why Crick and Watson kept their speculations

about replication brief, but also why they felt the need to say

something, otherwise someone else would have made the same

obvious suggestion and claimed the credit. And you can see why it

took about fifty years to sort out how the trick was actually

achieved.

............
That was how DNA represented genetic ‘information’, and how the

information was copied from parent to offspring. But what did the

information mean?

The earliest proposal was that DNA is a recipe for proteins.

Organisms are made from proteins – plus other things, but proteins

are the most complex constituents, the most common and arguably

the most important. Proteins are long chains of molecules known as

amino acids, and twenty of these occur in living organisms. In an

actual molecule the chain folds up in complex ways, but the key to

making the chain is to specify the sequence of amino acids.

Soon after Crick and Watson’s publication of the double-helix

structure, the physicist George Gamow suggested that the most

likely way for DNA sequences to specify amino acid sequences was

by a three-letter code. His argument was a mathematical thought

experiment. Using the four bases as letters, you can form 4 one-

letter words (A, C, G, T), 464¼16 two-letter words (AA, AC, ..., TT),
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and 46464¼64 three-letter words (AAA, AAC, ..., TTT). Using one

or two letters provided a total of 20 possible words – but how could

the chemistry tell that AA is a two-letter word rather than two

separate A’s? It made more sense to use words of a fixed length,

which had to be at least three since there were too few two-letter

words to specify 20 amino acids. With 64 three-letter words to play

with there is plenty of wiggle room, so it seemed highly inefficient

to use even more letters.

A long series of brilliant experiments proved Gamow right, and

led to what we now call the genetic code. It’s worth looking at this

in detail, because it displays a puzzling mixture of pattern and

irregularity.

Table 5 lists the 20 amino acids involved and which triplet of

DNA bases codes for which amino acid. To bring out the structure,
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Table 5 The 20 amino acids involved in the genetic code, and
which triplet of DNA bases codes for which amino acid.

Alanine (Ala), arginine (Arg), asparagine (Asn), aspartic acid (Asp),

cysteine (Cys), glutamic acid (Glu), glutamine (Gln), glycine (Gly),

histidine (His), isoleucine (Ile), leucine (Leu), lysine (Lys), methionine

(Met), phenylalanine (Phe), proline (Pro), serine (Ser), threonine (Thr),

tryptophan (Trp), tyrosine (Tyr), valine (Val)

TTT Phe TTC Phe TTA Leu TTG Leu

TCT Ser TCC Ser TCA Ser TCG Ser

TAT Tyr TAC Tyr TAA STOP TAG STOP

TGT Cys TGC Cys TGA STOP TGG Trp

CTT Leu CTC Leu CTA Leu CTG Leu

CCT Pro CCC Pro CCA Pro CCG Pro

CAT His CAC His CAA Gln CAG Gln

CGT Arg CGC Arg CGA Arg CGG Arg

ATT Ile ATC Ile ATA Ile ATG Met/START

ACT Thr ACC Thr ACA Thr ACG Thr

AAT Asn AAC Asn AAA Lys AAG Lys

AGT Ser AGC Ser AGA Arg AGG Arg

GTT Val GTC Val GTA Val GTG Val

GCT Ala GCC Ala GCA Ala GCG Ala

GAT Asp GAC Asp GAA Glu GAG Glu

GGT Gly GGC Gly GGA Gly GGG Gly
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I’ve split the triplets into four blocks, according to the first letter;

then within each block, the second letter corresponds to the row

and the third letter to the column. The triplets TGA, TAA, TAG and

ATG are exceptional. The first three of these do not code for an

amino acid, but stop the conversion of triplets into amino acids.

When the fourth triplet ATG is at the beginning of a gene it causes

this process to start, but otherwise it codes for methionine.

We speak of ‘the’ genetic code because exactly the same code

applies to the nuclear DNA sequences of virtually every known

microorganism, plant and animal. There are a very small number of

exceptions, almost all of which assign an amino acid to one of the

three STOP triplets. Also, mitochondria contain their own DNA,

and the genetic code for mitochondrial DNA has some small but

important differences.3 A very similar code applies to DNA’s sister

molecule RNA (ribonucleic acid), which among other things plays a

key role in turning DNA code into proteins, a process known as

transcription. The code in RNA has exactly the same structure, but

with thymine (T) replaced by a similar molecule, uracil (U). You

will often see U used in place of T in sequence data.

The genetic code contains both intriguing hints of order and

baffling irregularities. There are more triplets than amino acids

(even counting STOP and START), so some amino acids must be

specified by several triplets. The most common number is four

triplets to an amino acid: for example TCT, TCC, TCA and TCG all

code for serine (the top row of triplets in the table). Here the third

letter tells us nothing new, so it is redundant as far as the code

goes. This feature is common: eight of the sixteen rows in the table

correspond to precisely one amino acid. The third letter could not

be removed entirely in these cases, because the current chemical

machinery works with triplets. But this pattern suggests that maybe

there was once a simpler code, using pairs of bases, and TC

indicated serine. Later, the code itself evolved.

However, phenylalanine corresponds to TTT and TTC, but TTA

and TTG correspond to leucine. So do four triplets that begin with

CT. So here two triplets code for phenylalanine, but a whopping six

for leucine. It is as if the genetic code itself also evolved – but how

could it, while still ‘working’?

There are mathematical issues here, to do with changes to codes

and why they occur, as well as biological questions. Any major

changes in the code must have happened very early on, when life
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was first appearing on Earth, because once life gets going, changes

at such a fundamental level become increasingly difficult, and we

ought to see remnants of discarded codes somewhere in the living

world, albeit in some obscure organism. As I’ve said, there are a few

exceptions to the standard genetic code, but those look like recent

slight changes, not ancient major ones.

The ‘frozen accident theory’ takes the view that the genetic code

could easily have been very different. A different code would have

worked fine, but when life began to diversify, whichever code was

in use could no longer survive major changes. A code that initially

arose by accident was frozen in place once variants couldn’t

compete with the established code.

However, there are tantalising hints that the current code might

be more ‘natural’ than most alternatives. There are biochemical

affinities between particular amino acids and particular triplets, so

the whole set-up might have been predisposed towards some

relatively minor variant of the code we find today.

Attempts are being made to trace the likely evolution of the

early code, before it became locked in, based on symmetry

principles and a host of other speculative uses of mathematics and

physics, to try to reconstruct whatever it was that happened about

3.8 billion years ago. Finding definitive evidence, when DNA data

for organisms more than a few tens of thousands of years old are

unobtainable, will be tricky. So this one will run and run.

............
DNA provided an unexpected source of independent evidence in

favour of evolution.

Before Crick and Watson discovered the structure of DNA,

taxonomists had developed Linnaeus’s classification scheme into an

extensive description of the ‘Tree of Life’, the presumed

evolutionary ancestry of today’s organisms, by comparing the

anatomical features and behaviour of existing creatures. This

complex sequence of divergent species constituted a massive

collection of predictions based on evolutionary theory. What was

needed was an independent way to test those predictions – and

DNA sequencing does exactly that. When suitable techniques

became available, it turned out that organisms thought to be

related by evolution generally have similar DNA sequences.
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In some cases it is even possible to determine a specific genetic

change that distinguishes two species. Lacewings are elegant,

delicate flying insects which occupy some 85 genera and about

1,500 species. In North America the two most common species are

Chrysopa carnea and C. downesi. The first is light green in spring and

summer but brown in autumn, whereas the second is permanently

dark green. The first lives in grasslands and deciduous trees; the

second lives on conifers. The first breeds twice, once in the winter

and once in summer; the second breeds in the spring.

In the wild the two types do not interbreed, so they satisfy the

usual definition of distinct species. However, the genetic differences

between them are small and very specific, and centre on three

genes. One controls colour, and the other two control the breeding

time via the insect’s response to the length of daylight (a common

mechanism found in insects to ensure that they breed at a suitable

time of year). These genetic differences were initially inferred from

laboratory experiments in which the two species were brought

together and given the opportunity to interbreed.

Natural selection suggests a simple explanation of these

findings. A dark green insect is less visible on a dark green conifer

than a light green one is. So when dark mutants appeared, natural

selection kicked in: dark green lacewings that lived on conifers were

better protected against predators than light green ones, and

conversely light green ones living on light green grass were better

protected than dark green ones. Once the two incipient species

came to occupy separate habitats, they ceased to interbreed – not

because this was impossible in principle, but because they didn’t

meet up very often. The accompanying changes to the breeding

time reinforced this ‘reproductive isolation’.

Detailed analysis of a truly gigantic number of DNA sequences

leads to a Tree of Life that is very similar to the one already

developed on purely taxonomic grounds. The correspondence isn’t

perfect – it would be very suspicious if it were – but it is strikingly

good. So DNA mutations joined the story, confirming most of the

evolutionary sequences that taxonomists had inferred from

phenotypes, and providing clear evidence of the underlying genetic

mutations that enabled phenotypic changes.

A fossil rabbit in the wrong geological stratum would disprove

evolution. So would a modern rabbit with the wrong DNA.
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............
The supremacy of the gene has become entrenched in our collective

consciousness to such an extent that news media often talk of

‘genetic science’ when no genes or DNA are involved at all. The

vivid, flawed, but by no means nonsensical image of the ‘selfish

gene’ introduced in Richard Dawkins’ book of the same title has

captured public imagination.4 The main motivation for this image

is the existence of so-called junk DNA,5 which gets replicated along

with the important parts of the genome when an organism

reproduces. From this, Dawkins argues that the survival of a

segment of DNA is the sole criterion for its successful replication,

whence DNA is ‘selfish’.6

This is of course the old ‘a chicken is just an egg’s way to breed

a new egg’ line of thinking, dressed up in fancy hi-tech. It is equally

possible to give an account of genetics and evolution from the

point of view of an organism, leading to what biologist Jack Cohen

and I call the ‘slavish gene’, obsessed with activities that do not

damage the organism’s survival chances.7 The selfish gene metaphor

is not wrong – in fact, it is intellectually defensible as a debating

point. But it diverts our attention rather than adding to our

understanding. The relation between genes and organisms is a

feedback loop: genes affect organisms via development; organisms

affect genes (in the next generation) via natural selection. It is a

fallacy to attribute the dynamics of this loop to just one of its

components. It’s like saying that wage increases cause inflation, but

forgetting that price increases fuel demands for higher wages.

The image of the selfish gene has also inspired a rather naive

kind of genetic determinism, in which the only things that matter

about human beings are their genes. This vision of the gene as

absolute dictator of form and behaviour lies not far beneath the

surface of today’s biotechnology: so-called ‘genetic engineering’. By

cutting and splicing DNA molecules, it is possible to insert new

genes into an organism or to delete or otherwise modify existing

ones. The results are sometimes beneficial: pest resistance in

agricultural plants, for instance. But even this can have undesirable

side effects.

Such technology is controversial, especially when it comes to

genetically modified food. There are good reasons for this

controversy, and both sides have put forward some compelling

arguments. My own feeling is that we know enough about the
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mathematics of complex systems to be very wary of simplistic

models of how genes act, and this feeling is reinforced by the huge

amount that we don’t know about genes. I wouldn’t trust a

computer whose software had been hacked by a bright ten-year-old,

even if the result gave me a really nice screen saver. I would worry

whether anything had accidentally been damaged when the

program was hacked. I would be more likely to trust a professional

programmer who really understood the computer’s operating

system. But right now, genetic engineers are really just clever

hackers, and no one has much idea of how the genetic ‘operating

system’ really works.

With huge amounts of money at stake, the discussion has

become polarised. Opponents of genetic modification are often

branded as ‘hysterical’, even when they make their criticisms in a

moderate and well-reasoned manner. Biotechnology companies are

accused of taking huge risks for profit even though some of their

motives are more benign. Some people deny that any risks exist;

others exaggerate them. Underneath these arguments is a serious

scientific problem which deserves more attention. To put it bluntly:

our current understanding of genetics is completely inadequate for

assessing the likely benefits, costs or potential dangers of genetic

modification.

This may seem a strong claim, but specialists in genetics are

often blinded by their own expertise. Knowing far more about

genes and their modification than the opposition, they fall into the

trap of thinking that they know everything. However, the entire

history of genetics shows, that at every stage of its development,

whenever new data became available most of the previous

confidently held theories topple in ruins.

Only a few decades ago, each gene was thought to occupy a

single connected segment of the genome, and its location was fixed.

Barbara McClintock, a geneticist at Cornell University, made a series

of studies of maize and deduced that genes can be switched on or

off, and that they can sometimes move. For years her ideas about

‘jumping genes’ were derided, but she was right. In 1983 she won a

Nobel prize for discovering what are now called transposons –

mobile genetic elements.

Before the human genome was sequenced – a story I’ll tell in

the next chapter – the conventional wisdom was that one gene

makes one protein, and since humans have 100,000 proteins, they
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must have 100,000 genes. This was pretty much considered to be a

fact. But when the sequence was obtained, the number of genes was

only a quarter of that. This unexpected discovery drove home a

message that biologists already knew, but had not fully taken on

board: genes can be chopped up and reassembled when proteins are

being made. On average, each human gene makes four proteins,

not one, by exploiting this process.

Each overturning of the conventional wisdom can be viewed in

a positive light: human knowledge is thereby advanced, and we

gain insight into life’s subtleties. But there is a negative aspect as

well: the overwhelming confidence that the system was thoroughly

understood, and that no big surprises were going to happen, right

up to the moment when it all fell to bits. This does not set a

convincing precedent.

Genetic modification has huge potential, but there is a danger

of this being squandered by prematurely bringing experimental

organisms to market. The commercial use of genetically modified

food plants has already led to unexpected adverse effects, and

hardly any of the plants have lived up to the early hype. Most were

quickly withdrawn. Some that initially appeared to be successes are

running into trouble. There is a tendency among biotechnology

companies to focus on food safety (‘our grain is perfectly safe’),

where they feel comfortable. They tend to ignore potential

undesirable effects on the environment, especially delayed-action

effects, our knowledge of which is pitiful – mainly because we don’t

understand ecosystems well enough. No amount of genetic

expertise will improve that.

However, safety is also a significant concern. The argument that

genetic modification merely does quickly and directly what

conventional plant breeding does slowly and indirectly is nonsense.

Conventional breeding mimics nature by forming new

combinations using existing genes, through the operation of the

plant’s normal genetic machinery. Genetic modification fires alien

DNA randomly into the genome, allowing it to lodge wherever it

falls. But an organism’s genome is not merely a list of bases. It is a

highly complex dynamical system. It is naive to imagine that

making crude changes here and there will have only the obvious,

expected effects.

Imagine taking a gene whose effect, in its normal location in its

normal organism, is to make a protein that has no adverse effect on
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humans – which is what ‘safe to eat’ basically means. Does that

guarantee that it will be equally ‘safe’ when introduced into a new

organism? On the contrary: it could potentially wreak havoc,

because we often don’t know where the new segment of DNA will

lodge itself – and even if we do, genes can move. The new gene

might not make the desired protein and nothing else. It might not

make it at all. It could end up inside another gene, interfering with

that gene’s function. This function might be making a protein: if

so, either the wrong protein gets made, with potential hazards, or it

doesn’t get made, with knock-on effects for the whole plant. Worse,

the newcomer might end up inside a regulatory gene, and the

entire network of gene interactions could go haywire.

None of this is particularly likely, but it is possible. Organisms

reproduce, so any disaster can propagate and grow. We have the

perennial problem of an event that is very unlikely, but could do

enormous damage if it happens, with the added feature that it can

reproduce.

In the rush to market, experiments have been carried out on a

large scale in the natural environment, when controlled laboratory

testing would have been far more effective and informative. The

British Government sanctioned large-scale planting of genetically

modified plants in order to test whether their pollen spread only a

few metres (as expected) and to make sure that the new gene would

not be spontaneously incorporated into other species of plant

(ditto). It turned out that the pollen spread for miles, and the new

genes could transfer without difficulty to other plants. Effects like

this could, for example, create pesticide-resistant strains of weeds.

By the time the experiment had revealed that the conventional

wisdom was wrong, there was no way to get the pollen, or its genes,

back. Simple laboratory tests – such as painting pollen onto plants

directly – could have established the same facts more cheaply,

without releasing anything into the environment. It was a bit like

testing a new fireproofing chemical by spraying it on a city and

setting the place alight, with the added twist that the ‘fire’ might

spread indefinitely if, contrary to expectations, it took hold.

It is all too easy to imagine that the genome is a calm and

orderly place, a repository of information that can be cut and

pasted from one organism to another, only ever performing ‘the

function’ that geneticists expect it to perform. But it’s not – it’s a

hotbed of dynamic interactions, of which we understand only the
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tiniest part. Genes have many functions; moreover, nature can

invent new ones. They do not bear a label ‘USE ONLY TO MAKE PROTEIN

X’.

Continuing to do research on genetic modification, and

occasionally using successfully modified organisms for specific

purposes such as the production of expensive drugs, make good

sense. Helping developing countries to produce more food is a

worthy aim, but it is sometimes used as an excuse for an alternative

agenda, or as a convenient way to demonise opponents. There is

little doubt that the technology needs better regulation: I find it

bizarre that standard food safety tests are not required, on the

grounds that the plants have not been changed in any significant

way, but that the innovations are so great that they deserve patent

protection, contrary to the long-standing view that naturally

occurring objects and substances cannot be patented. Either it’s new,

and needs testing like anything else, or it’s not, and should not be

patentable. It is also disturbing, in an age when commercial

sponsors blazon their logos across athletes’ shirts and television

screens, that the biotechnology industry has fought a lengthy

political campaign to prevent any mention of their product being

placed on food. The reason is clear enough: to avoid any danger of a

consumer boycott. But consumers are effectively being force-fed

products that they may not want, and whose presence is being

concealed.

Our current understanding of genetics and ecology is

inadequate when it comes to the widespread use of genetically

modified organisms in the natural environment or agriculture. Why

take the risk of distributing this material, when the likely gains for

most of us – as opposed to short-term profits for biotechnology

companies – are tiny or non-existent?

............
It was once thought that an organism’s DNA contains all of the

information required to determine its form and behaviour. We now

know that this is not the case. The genome is of course very

influential, but several other factors can affect the developing

organism. Collectively, they are known as epigenetic features. The

word epigenetics means ‘above genetics’. It refers to changes in
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phenotype or gene expression that can be passed on to the next

generation, but do not reside in DNA.

Among the first epigenetic processes to be discovered was DNA

methylation. Here a region of DNA acquires a few extra atoms, a

methyl group. This causes a cytosine base to change into a closely

related molecule, 5-methylcytosine. This modified form of cytosine

still pairs up with guanine in the DNA double helix, but it tends to

‘switch off’ that region of the genome, with the result that the

proteins that are being encoded are produced in smaller quantities.

Another is RNA interference. This remarkable phenomenon is

enormously important, yet it was not discovered through a major

research programme: several biologists discovered the effect

independently. One of them was Richard Jorgensen. In 1990 his

research team was working on petunias, hoping to breed new

varieties with brighter colours. They started by trying an obvious

piece of genetic modification: engineering extra copies of the

pigment-producing gene into the petunia genome. Obviously, more

enzyme would produce more pigment.

But it didn’t. It didn’t produce less pigment, either. Instead, it

made the petunia stripy.

Eventually, it transpired that some RNA sequences can switch a

gene off, and that stops it making protein. The stripes appeared

because the pigment genes were switched on in some cells and off

in others. This ‘RNA interference’ turns out to be very common. It

opens up the prospect of deliberately switching genes on or off,

which would be important in genetic engineering. More

fundamentally, it changes how biologists view the activity of the

gene.

The orthodox picture, as I’ve said, was that each gene makes one

protein, and each protein has one function in the organism. For

instance, the haemoglobin gene makes haemoglobin, and

haemoglobin carries oxygen in the blood and releases it where it is

needed. So a specific sequence in an organism’s DNA can be

translated directly into a feature of the organism. But as the

geneticist John Mattick wrote in Scientific American8:

Proteins do play a role in the regulation of eukaryotic gene

expression, yet a hidden, parallel regulatory system consisting of

RNA that acts directly on DNA, RNAs and proteins is also at

work. This overlooked RNA signalling network may be what
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allows humans, for example, to achieve structural complexity

far beyond anything seen in the unicellular world.

Some epigenetic effects involve DNA, but in a different organism.

In mammals, for instance, the early stages of an egg’s development

are controlled, not by the egg’s DNA, but by that of the mother.

This actually makes a lot of sense, because it lets a fully functioning

organism kick-start the growth of the next generation. But it means

that a key stage in the growth of, say, a cow is not controlled by

that cow’s DNA. It is controlled by another cow’s DNA.

Even more broadly, some things can be conveyed from parent

to child through cultural interactions rather than genetic ones. This

effect is very common in humans – we acquire our language from

our culture, our religious beliefs or lack of them, and many other

things that make us human. But behaviour is acquired by similar

cultural interactions in rats, dogs and many other animals.

............
When the genetic code was discovered, DNA was seen as a kind of

blueprint. Once you possess an engineering blueprint of, say, an

aircraft, then any competent engineer will be able to tell you how

to make it. Once you possess ‘the information’ to make an animal,

you can make that animal. And if you can make it, you must know

everything there is to know about it.

It stands to reason.

Well, no, it doesn’t. Put baldly like that, it sounds like an

obvious exaggeration, a pun in which different meanings of the

word ‘information’ are confused. It doesn’t even work for

engineering. You need a lot more than just ‘the blueprint’ to build

an aircraft. You need to know all the engineering techniques that

are implicit in the blueprint. You need to know how to make the

components, how to choose and obtain suitable materials, and you

need the right tools.

It works even less well for biology, where the analogous

‘techniques’ are implicit in the way the organisms themselves work.

You can’t make a baby tiger from tiger DNA. You need a mother

tiger too – or at the very least, you need to know how a mother

tiger does the job. And even if this were implicit in her DNA (which

it’s not, because of epigenetic effects), you would have to make the

implicit explicit. Despite that, the vision of DNA as King led to
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enormous progress in biology. It, and the associated discoveries

about biological molecules, are a major reason why today’s doctors

can actually cure many diseases. For previous generations, this was

essentially impossible.

The genetic sequences encoded in DNA are a big part of ‘the

secret of life’. If you’re not aware of the role of DNA, if you don’t

know what the sequence looks like, you’re missing a gigantic part

of the picture. It’s like trying to figure out how modern society

works when you don’t know about telephones.

But DNA is not the only secret.

Figuring that out took much longer, and was more discouraging.

When you’ve made such a huge breakthrough, one that takes you

so far in comparison with everything that has gone before, it’s

disappointing to discover that unlocking one boxful of secrets and

raising the lid does not do a Pandora and reveal all manner of

biting insects and vile creatures, but just reveals . . . another locked

box inside.
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8 The Book of Life
.................................

In 1990 the world’s geneticists embarked on the most ambitious

programme of biological research the world had ever seen, which

many compared in its scale to the Kennedy-era project to land a

man on the Moon. Biologists were aiming to join the ranks of big

science, previously occupied mainly by particle physicists, nuclear

physicists and astronomers, where governments were willing to

spend billions of dollars rather than mere millions. This financial

aim was explicit, but the scientific objective was impeccable and

important: to sequence the human genome – that is, to obtain the

complete sequence of DNA bases in a typical human. It was known

that there are about three billion of these, so the task would be

difficult, expensive, but feasible. Just right for big science.

The project emerged from a series of workshops supported by

the US Department of Energy, beginning in 1984 and leading to a

report in 1987.1 This set the goal of sequencing the human

genome, pointing out that this objective was ‘as necessary to the

continuing progress of medicine and other health sciences as

knowledge of human anatomy has been for the present state of

medicine’. In the popular media, biologists were in search of the

Book of Life.

In 1990 the Department of Energy and the National Institutes of

Health announced a $3 billion project – one dollar per base pair.

Several other countries joined the USA to create a consortium:

Japan, the United Kingdom, Germany, France, China and India. At

that time, finding even short DNA sequences was time-consuming

and laborious, and it was estimated that the project would take

fifteen years. This estimate was not far out, despite huge
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improvements in sequencing technology. However, a latecomer to

the game demonstrated that the whole project could have been

completed in about three years, for one-tenth of the cost, by

putting more effort into thinking and less into complicated

biochemistry. In 1998 Craig Venter, a researcher at the National

Institutes of Health, founded his own company, Celera Genomics,

and set out to derive the entire sequence independently using $300

million contributed by private investors.

The publicly funded Human Genome Project (HGP) published

its new data on a daily basis, and announced that all its results

would be freely available. Celera published its data annually, and

announced its intention to patent some of it – a few hundred

genes. In the event, Celera initiated preliminary patents on 6,500

genes or partial genes. These intellectual property rights were what,

with luck, would repay investors. A corollary was that Celera’s data

would not be free for all researchers to use; the company’s initial

agreement to share data with HGP came to bits when Celera

declined to lodge its data in the publicly accessible GenBank

database. But Celera used HGP’s data as part of its own effort – well,

it was public.

To protect the free release of vital scientific data, HGP took steps

to publish its data first, which would (subject to legal wranglings)

constitute ‘prior art’ and invalidate Celera’s patents. In the event,

HGP published the ‘final’ sequence a few days before Celera. By

then, President Bill Clinton had already stated that he would not

permit the genome sequence to be patented, and Celera’s market

value plummeted. The NASDAQ stock exchange, overloaded with

biotechnology companies, lost tens of billions of dollars.2

In 2000 Bill Clinton and Tony Blair announced to the world

that a ‘draft genome’ had been obtained. The next year, both HGP

and Celera published drafts which were about 80% complete. An

‘essentially complete’ genome was announced by both groups in

2003, though there were disagreements about what this phrase

meant, but improvements in the period up to 2005 led to a

sequence that was about 92% complete. The main stages of the

programme were to sequence complete chromosomes – recall that

we humans have 23 pairs of these. The sequence for the final

human chromosome was published in Nature in 2006.

By 2010 most of the gaps in the sequence had been filled,

although a significant number remain. So do numerous errors. A
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dedicated group of geneticists has undertaken the task of filling the

gaps, and eliminating the errors in supposedly ‘known’ regions.

This is scientifically essential, but they will get little credit for it

because the exciting frontier has moved on. Their devotion to

science is admirable.

............
How do you ‘read’ the sequence of such a huge molecule as DNA?

Not by starting at one end and proceeding along it to the other.3

Current sequencing techniques do not work on gigantic molecules:

they typically use stretches of 300–1,000 DNA bases. The way round

this restriction is obvious, though not its implementation: break the

molecule into short fragments, sequence them, then stick them all

back together in the right order.

The first effective sequencing method goes back to Allan Maxam

and Walter Gilbert in 1976. Their idea was to change the structure

of the DNA molecule at specific bases, and add a radioactive ‘label’

at one end of each fragment. Four different chemical processes then

targeted the four types of base. It would have been neat and tidy if

these processes could cut the strand at A, C, G and T respectively,

but the chemistry didn’t work out like that. Instead, two processes

created cuts at specific bases, C and G, while the others had a little

ambiguity: they created cuts at either of two distinct bases: A or G,

and C or T. However, if you knew the ‘A or G’ data and the G data,

you could deduce which of the ‘A or G’ cuts were A and which were

G, and similarly for the ‘C or T’ cuts. Knowing which type of base is

located at the cut, and using the radioactive label to sort the

fragments into order by letting them diffuse through a sheet of gel,

you could deduce the sequence of bases. This method is called gel

electrophoresis, because it passes an electric current through the gel

to make the molecules diffuse.

The next advance was the chain-terminator method, also called

the Sanger method after its inventor, Frederick Sanger. This

procedure also creates fragments of varying lengths, which are

similarly diffused through a gel to sort them into order. The

cunning step is to attach fluorescent dyes to the molecular labels –

green for A, blue for C, yellow for G, red for T – and to read these

automatically using optical methods.

This technique works well for relatively short strands of DNA,
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up to about a thousand bases, but it becomes inaccurate for longer

strands. Numerous technical variations on the chain-terminator

method have been devised to streamline the process and speed it

up. Statistical methods have been developed to improve accuracy,

in cases where the patch of fluorescent dye is a bit faint or fuzzy.

Automated DNA sequencers can handle 384 DNA samples in a

single run, and can carry out about one run per hour. So in a day,

you can sequence about 9,000 strands – a little under 10 million

bases per sequencer per day. As experience grows and demand for

new sequences increases, these numbers are rising rapidly.

............
At this stage there is a trade-off between two aspects of the

problem. Creating the break points and sequencing the resulting

fragments are a matter of biochemistry. The cleverer you are when

you break the molecule up, the easier it will be to reassemble the

pieces. If you cut the chain at ‘known’ locations, and keep track of

which pieces are adjacent to them, then reassembly is in principle

straightforward. It’s like marking the corresponding ends of the

fragments with labels that match.

If convenient break points always existed, this method would be

very effective. But often they don’t, and then an alternative is

required. Both the HGP and Celera used the ‘shotgun’ method. This

breaks the strand into random fragments. Each fragment is

sequenced, then they are fitted together by mathematical

techniques, implemented on fast computers. The method works

because the random fragments sometimes overlap, where the same

bit of DNA has been cut in two different places. Those overlaps tell

you how the pieces fit together.

In oversimplified terms, it works like this. Suppose you have two

pieces

CCTTGCCAAA and TGTGTGAACC

and you know that they abut, but not in which order. Then you

have to decide whether the correct join is

CCTTGCCAAATGTGTGAACC

or

TGTGTGAACCCCTTGCCAAA
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If you have an overlapping fragment that reads

GAACCCCTTG

then it fits the second possibility

TGTGTGAACCCCTTGCCAAA

but not the first. In practice, you have a lot of these fragments, and

a variety of information about possible ways to reorder them. And

the fragments are much longer – but that helps more than it

hinders, because the overlaps can be larger, hence less ambiguous.

Again, there are lots of different ways to carry out this strategy

for sequencing long DNA strands. All of them rely heavily on

computers to do the mathematical calculations and to handle the

large quantities of data, but a lot of mathematical thought has to

go into sorting out what the computers are instructed to do. A

simple example of such methods is the so-called greedy algorithm.

Given a collection of fragments, many of them overlapping, first

find the pair of fragments with the biggest overlap. Merge them

into a single chain and replace them by this new chain. Now

repeat. Eventually, many of the fragments will be merged into a

single chain; with enough overlaps, all of them. This method does

not always lead to the shortest chain that is consistent with all the

fragments, and it may not produce the correct assembly. It is also

computationally inefficient because at each stage you have to

calculate all the overlap sizes for all the pairs of fragments.

As a simple example with much smaller numbers, suppose the

fragments are

TTAAGCGC CCCCTTAA GCTTTAAA TCCCCCCA

The biggest overlap occurs with CCCCTTAA and TTAAGCGC,

which therefore merge to give CCCCTTAAGCGC, and that replaces

the first two sequences on this list. The biggest overlap among

what’s left is with CCCCTTAAGCGC and GCTTTAAA, which merge

to give CCCCTTAAGCGCTTTAAA. The fourth sequence on the list

doesn’t overlap this, so it has to be left unconnected until further

data are obtained.

The HGP put most of its money on the biochemical step, and

first broke up the genome into sequences of about 150,000 bases by

cutting it at specific locations. This involves a lot of effort finding

enzymes that make suitable cuts, and sometimes these prove
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elusive. Then each of these fragments was sequenced by the

shotgun method. Celera put all of its money on the mathematical

step, and applied the shotgun to the entire human genome. Then it

used a large number of sequencing machines to find the DNA

sequences of the fragments, and assembled them by computer.

You can either use clever chemistry to simplify the maths, or

use clever maths to simplify the chemistry. HGP took the first

approach, Celera the second. The second turned out to be cheaper

and faster, mainly thanks to the enormous power of modern

computers and the development of slick mathematical methods.

The wisdom of this choice was not entirely obvious at first, because

Celera used data from the HGP in its assembly process. But as more

and more genomes have been sequenced, it has become clear that

whole-genome shotgun is the way to go, at least until something

better comes along.

Today, sequencing genomes has become almost routine.

Scarcely a week passes without an announcement that a new

organism has been sequenced – over 180 species to date. Most are

bacteria, but they also include the mosquito responsible for

infecting humans with malaria, the honeybee, the dog, the chicken,

the mouse, the chimpanzee, the rat and the Japanese spotted green

pufferfish. As I write, the latest is a sponge, whose sequence may

shed light on the origin of eukaryotes.

In Jurassic Park, dinosaurs were brought back to life by

sequencing their DNA, extracted from blood that had been ingested

by blood-sucking flies which were then preserved in amber. This

fictional technique doesn’t work in reality, because ancient DNA

degrades too fast, but over the past few years something similar has

been done with DNA that is tens of thousands of years old. In

particular, we now have a growing understanding of the

Neanderthal genome. Neanderthals, of course, were a rather robust

form of hominid that coexisted with early modern humans,

between about 130,000 and 30,000 years ago. Until recently, some

taxonomists have considered them to be a separate species, Homo

neanderthalensis, while others have classified them as a subspecies,

H. sapiens neanderthalensis, of H. Sapiens. It is now known that about

4% of people alive today have some DNA sequences derived from

the Neanderthal genome, transmitted via a Neanderthal male and a

modern-human female. So DNA supports the subspecies

classification.
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............
The word ‘gene’ is bandied about as if everyone knows what it

means. Genes make you what you are. They explain everything

about you. Genes make you fat, they make you homosexual, they

cause diseases, they control your destiny.

Genes are magic. Genes perform miracles.

It is worth distinguishing two uses of the word ‘gene’. One is

very limited: a gene is a portion of the genome (not necessarily in

one connected piece) that codes for one or more proteins. Not so

long ago the conventional wisdom would have deleted ‘or more’,

but the Human Genome Project revealed that although we have

100,000 different proteins in our bodies, they are specified by only

25,000 genes. Genes often come in several pieces, and the amino

acid sequences that these pieces specify can be spliced together in

many different ways. So the same gene can, and often does, code

for several different proteins.

The second usage of ‘gene’ is extraordinarily broad. It arises

from the activities of neo-Darwinists, who reinterpreted Darwinian

evolution in terms of DNA. This approach has enormous scientific

value, but some of the interpretations associated with it are

questionable; and unfortunately these interpretations have become

common currency, while only specialists understand the underlying

science. In his elegant masterpiece The Blind Watchmaker, Richard

Dawkins defined the phrase ‘a gene for X’ to mean ‘any kind of

genetic variation that affects X’. Here X is any feature of an

organism; Dawkins’ example is ‘tying shoelaces’.

This definition is just about defensible, though it runs into

trouble when X is ‘having a blue-eyed mother’. In practice, ‘affects

X’ is interpreted as ‘changes to the gene correlate with changes to

X’, because cause and effect are often hard to establish. The

children of blue-eyed mothers do indeed exhibit genetic variation

that correlates with having a blue-eyed mother, so in that sense

they ‘have a gene for having a blue-eyed mother’. But in the stricter

sense the gene that matters is actually in the mother; the children

show genetic variation because they sometimes inherit that gene.

Even ignoring such examples, the second, abstract definition of

‘gene’ can cause problems if it is confused with the first, concrete

definition. Predictably, that’s exactly what has happened. Many

people now assume that our behavioural quirks and predisposition

to various diseases can be traced to specific DNA sequences in our
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genetic make-up. Newspaper reports of geneticists finding ‘the gene

for’ something or other can lead us to believe that the something or

other in question is somehow written into our (some of us’s) genes.

There are genes – we are told – for blue eyes, cystic fibrosis, obesity,

novelty-seeking, susceptibility to heroin addiction, dyslexia,

schizophrenia and emotional sensitivity. Analyses of identical twins

separated at birth suggest that your genes may even determine what

kind of person you marry and what make of car you buy.

Somewhere in my genes, apparently, it says ‘Toyota’. I find this

very curious, because according to my birth certificate my genes

existed in 1945, but Toyota made no significant exports to the UK

until the 1970s.

Alleged ‘genes for’ schizophrenia, alcoholism and aggression

have been announced, to a flourish of trumpets, and then quietly

withdrawn when subsequent evidence fails to back up the initial

assertion. The location of a gene for breast cancer has been claimed

several times, not always correctly. Biotechnology companies have

fought in court over patent rights to genes that are thought to

increase the risk of contracting various diseases.

In 1999 the Guardian newspaper printed an article with the

headline ‘ ‘‘Gay gene’’ theory fails blood test.’4 This story began in

1993 when a segment of human chromosome known as Xq28,

inherited from the mother, was implicated in male homosexuality.

The initial evidence came from a study of gay male twins and

brothers carried out by Dean Hamer and others, which concluded

that gay men tend to have more gay relatives, on the maternal side,

than heterosexual men do.5 Later, various researchers found that in

40 pairs of gay brothers, the genetic similarities in the Xq28 region

were significantly greater than chance. This finding created a global

media sensation, and the ‘gay gene’ seemed to have been given

sound scientific basis, even though no scientist ever claimed to

have pinned anything down to a single gene.

The fateful chromosome segment Xq28 played a central role in

Hamer’s book Living with Our Genes, but even before it appeared,

serious doubts were surfacing. In particular, other researchers

couldn’t replicate Hamer’s results. In 1999 the journal Science

carried an article by George Rice and colleagues, who examined

blood from 52 pairs of brothers and attempted to confirm the link

between Xq28 and homosexuality. They reported: ‘Our data do not

Profile Books - Maths of Life Data Standards Ltd, Frome, Somerset – 10/2/2011 01 Maths of life Chapters.3d Page 118 of 336

118 // Mathematics of Life



support the presence of a gene of large effect influencing sexual

orientation at position Xq28.’6

This negative conclusion remains in force today. In fact, the role

of individual genes in determining large-scale human characters –

those we encounter on a human level – seems to be very small.

Leaving aside a few direct connections, such as hair and eye colour,

the link between any specific gene and a human-level character is

virtually non-existent. As evidence, consider height. There is little

doubt that people’s genes play a major role in determining their

height: tall parents tend to have tall children. So it is no surprise

that, to date, height is the character that has been found to be most

closely correlated with the presence or absence of a single gene

(again excepting hair colour and the like). What is a surprise,

however, is the extent to which this particular gene affects height.

It accounts for an astonishing . . . two per cent of the variation in

human height.

And that’s the biggest correlation between a single gene and a

human character.

............
How can two competent studies, both using similar methods, lead

to such contradictory results? I’m not suggesting that the scientists

concerned acted in any way improperly. But there is a mechanism

that can easily lead to these kinds of contradictory outcomes, even

though the experiments have been performed honestly and

competently. It comes from a subtle misinterpretation of statistics.

Statistical methods are used to assess correlations between two

data sets. For instance, heart disease and obesity in humans tend to

be associated. The degree of correlation can be calculated

mathematically; its statistical significance is a measure of how likely

it is for such a correlation to have arisen by pure chance. If, for

instance, that level of correlation occurs 1% of the time in

randomly chosen data sets, then the correlation is said to be

significant at the 99% level.

The widespread availability of computer software has rendered

virtually effortless a procedure that not long ago required days of

work on a desktop calculating device – what we might call the

‘scattershot’ approach to finding significant correlations between

genes and characters. Suppose you start out with a list of genes (or
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DNA segments or regions of the genome) and a list of characters in

a sample of people. You now draw up a big table, called a

correlation matrix, to find the most significant associations. How

often is liver disease associated with the gene Visigoth? How often is

being good at football associated with BentSquirrel5? (I’m making up

the gene names . . . I hope.) Having done so, you pick the strongest

association you can find, and run the relevant data through a

statistics package to find out how significant it is. You then declare

this association to be statistically significant at the level you have

calculated, and publish that particular result, while ignoring all the

other pairs of variables that you looked at.

What’s wrong? Why does the next study fail to find any such

association? Why would we expect no confirmation? Because you

chose a pair of data sets that were unusually closely correlated. You

then, in effect, pretended you’d bumped into it at random. It’s like

sorting through the pack to find the ace of spades, slapping it on

the table, and claiming to have achieved a feat with probability

1/52.

Suppose you are looking at 10 genes and 10 characters. That

gives 100 pairs. Of those 100 cross-correlations, given random

variation, you expect one – on average – to be ‘significant at the

99% level’ – even if there is no causal connection whatsoever. (Actually,

those 100 events won’t be completely independent. A similar

criticism holds if that is taken into account, but the mathematics is

less transparent.) If you now use the significance criterion to reject

the other 99 pairs, and keep the significance level that the package

gives you, there you have the fallacy. Not surprisingly, the next

independent trial finds no significant association at all. It was never

there.

The correct methodology should be to use one group of subjects

to home in on a possible connection, but then to check it using a

second, independent group (ignoring all data from the first trial and

looking only at associations you’ve already chosen via the first

trial). Often, however, the first study published in a journal and

announced to the media carries out only the first step. Eventually a

different team carries out the second step . . . and, surprise surprise,

the result can’t be replicated. Unfortunately, it may take quite a

while for the second step to be performed, and the mistaken claim

to be corrected, because there is little scientific kudos to be gained

by repeating other people’s experiments.
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............
The three billion DNA bases in ‘the’ human genome may seem a

lot, but in terms of computer storage, it constitutes a mere 825

megabytes of raw data. This is much the same as one music CD. So

we are roughly as complex as Sergeant Pepper’s Lonely Hearts Club

Band.

Because the information content of the human genome is so

small, it is now possible to sequence the genome of an individual at

a cost of between $5,000 and $15,000, predicted to drop to $1,000

within a couple of years. (The precise cost depends on how much of

the genome is involved and other factors, including why the

sequencing is being done and who is doing it.) This ‘personal

genomics’ leads into an aspect of the Human Genome Project that

was somewhat neglected in the heady rush to obtain the sequence.

There is no such thing as the human genome. Different individuals

have different alleles (gene variants) at particular genetic locations

(such as, but not limited to, hair colour, eye colour and blood type)

and also differ in parts of the genome that do not code for proteins,

such as the so-called variable tandem repeats, where the same DNA

sequence is repeated over and over again. In fact, this is the basis of

genetic fingerprinting, which was introduced by forensic scientists

as a way to associate DNA traces with their owners. It wouldn’t

work if all humans had the same genome.

However, we all have much the same basic framework for our

DNA, and this is what the Human Genome Project was actually

about. As it turned out, Celera’s genome really was personal: it was

partly based on its founder Craig Venter’s own DNA.

In the heady days when the Human Genome Project was first

seeking funding, the idea was sold to governments and private

investors not as a vital piece of basic science, but as something that

would inevitably lead to massive advances in our ability to cure

diseases. Once you know ‘the information’ that makes a human

being, surely you know everything about that being. Well no,

because you’re confusing two different meanings of ‘information’ –

what is encoded in DNA, and what you would need to know to put

a human being together from scratch. Similarly, the telephone

directory gives you ‘the information’ you need to get in touch with

someone, but you also need a telephone, and you’re out of luck if

they’re away on holiday. (Less so now that we have mobile phones,

but you get the point.)
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To date, the pay-off from the Human Genome Project, in terms

of curing diseases, has been virtually non-existent. This is really no

great surprise. For instance, the genetic basis of cystic fibrosis is the

gene CFTR . It contains about 250,000 base pairs, but the protein

that it encodes (cystic fibrosis transmembrane conductance

regulator) is a chain of 1,480 amino acids. Get this chain wrong,

and the protein doesn’t work. In 70% of the mutations seen in

people with cystic fibrosis, three specific base pairs go missing. This

triplet codes for phenylalanine, at position 508 of the protein. Its

omission causes cystic fibrosis. The remaining 30% of cystic fibrosis

patients have, between them, about a thousand different mutations

of CFTR.

Most of this has been known since 1988, but no cure for cystic

fibrosis has yet been discovered. Gene therapy, a technique for

changing the DNA in the cells of a living human by infecting them

with a virus that carries the required sequence, has run into serious

trouble after the deaths of several patients. Some forms of this

treatment are currently illegal in various countries; however, the

technique has had limited success in the treatment of X-linked

severe combined immunodeficiency, popularly called bubble-boy

syndrome because sufferers have to be isolated from those around

them to avoid severe infections.

There is a growing realisation that, with a few standard

exceptions, our genes do not cause – or even predict – the diseases

that we will contract throughout our lives. The US Government is

now taking urgent steps to regulate the activities of personal

genomics companies, to prevent the exploitation of inaccurate

public perceptions of genes.

As basic science, the Human Genome Project constitutes a huge

breakthrough. As a major advance in medicine, it has yet to

perform. Even as basic science, its main outcome has been to force

major revisions of biologists’ previous assumptions about human

genetics. I’ve already mentioned that before the human genome

was sequenced, it was believed that there must be about 100,000

genes, in the sense of ‘sequences that code for proteins’. The reason

was straightforward: the human body has about 100,000 different

proteins. As already remarked, it turned out that only 25,000 or so

such genes exist. What we then learned is that genes break up into

isolated segments, which can be combined in many ways, so the

same gene can code for several proteins. The idea that an
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individual’s DNA sequence is some kind of dictionary of its proteins

turns out to be naive and simplistic.

All this makes the Human Genome Project excellent science: it

changes our views. Unfortunately, the resulting picture has turned

out to be more complicated than biologists had expected, and it is

becoming clear that the gap between sequencing an organism’s

DNA and knowing how that organism works is far greater than

most people had hoped.
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9 Taxonomist, Taxonomist,
Spare that Tree

.................................

Anyone who visits a zoo quickly notices that some animals are

more alike than others. Lions, tigers, leopards and cheetahs are all

variations on a basic ‘cat’ design; polar bears, brown bears and

grizzly bears are all bears; wolves, foxes and jackals are dog-like, and

so on. Our best explanation of these resemblances, along with

misleading exceptions such as dolphins resembling sharks, is

evolution. However, the similarities were developed into a

systematic classification of life on Earth, long before Darwin devised

the first credible theory for their occurrence. One of the first steps

in the development of any branch of science is to find a way to

organise the wealth of observations that nature presents to us, and

this is especially necessary in biology, because of the vast diversity

of life.

As we’ve seen, the first important step in this direction was

made by Linnaeus, with his ambitious scheme to classify not just

animals, but plants and minerals as well. He was not the first to try

to bring some kind of order into such matters, and some of his

terminology goes back to Aristotle, but his method was the first to

be widely adopted.

We can represent the eightfold hierarchy of taxonomic ranks

diagrammatically. Life subdivides into three domains; each domain

subdivides into a number of separate kingdoms, and so on.

Mathematically, a series of subdivisions of this type has the

structure of a tree – a diagram with repeated branchings (see

Figure 18). The trunk of the tree is Life; this splits into three major
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limbs, the domains, which are eukaryotes, prokaryotes and archaea.

Each domain splits into kingdoms: for example the eukaryote

domain divides into animalia, plantae, fungi, amoebozoa,

chromalveolata, rhizaria and excavata. The first two are animals and

plants, the third is what it appears to be, and you can look the

fancy ones up if you want to know what they are. Then animalia

divides into a large number of phyla – so large that it is normal to

first split it into subkingdoms, then these split into superphyla, and

finally those split into phyla.

One of the reasons why these further subdivisions have arisen is

that, over time, we have discovered vastly more species than were

known when Linnaeus first began to catalogue nature’s diversity.

But the growing complexity of the system of nomenclature, and the

arguments that often accompany this process, also indicate that the

rich panoply of life does not easily fit into any preassigned scientific

straitjacket. Many modern biologists think that this system is no

longer adequate to describe the complicated interrelationships

found in living creatures, which is probably correct, but it does

suffice to label them, and it is convenient, traditional and

comprehensible by humans – unlike the suggested replacements.
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............
Linnaeus’s classification scheme made it possible to establish, fairly

definitively, whether any new-found organism was a genuinely new

species or one that was already known. It also had a seductive

allure, structuring all Earth’s life forms into a single Tree of Life,

one of the enduring and iconic evolutionary images. This captures,

in diagrammatic form, the relationships among present-day species

and their evolutionary ancestors. Ernst Haeckel produced many

wonderful evolutionary trees, in a somewhat baroque style of

representation; precursors go back to Darwin’s notebooks and a

diagram in the Origin. Darwin, realising that he lacked sufficient

data, did not commit himself to a single origin. But it is clear that

he did not expect dozens of independent origins for various types

of creature. A majestic tree, with bifurcating boughs, branches,

twigs and twiglets, provides a vivid metaphor for the idea that all

living creatures are related, and that there was a single origin of life

(see Figure 19). Or possibly a small number of separate origins,

which would lead to several disconnected trees.

Part of the image’s appeal is our familiarity with ‘family trees’,

especially of royal families. Today there are genealogical websites

where you can research your family’s history and draw up a tree

showing your parents, grandparents, siblings and other close

relatives. This familiarity makes us think we understand family

trees, and leads us to view the Tree of Life as something similar.

However, diagrams like this can cause confusion. Do the branches

represent species, or relationships among species? Do they represent

species that exist today, or ones that used to exist and are now

found only as fossils? When evolutionary explanations came into

fashion, the distinction became vital, but was often ignored. For

example, the jibe ‘Which ape was your grandfather, Mr Darwin?’

assumed that today’s apes could be humanity’s past ancestors. This

isn’t what Darwin was suggesting, and in any case it’s impossible

unless someone invents a time machine.

Is a tree an appropriate metaphor for evolutionary divergence?

When species split through evolution, a process known as

speciation, a single species typically becomes two. It is difficult not

to speak of this process as ‘branching’, and just like the branches of

a real tree, species split repeatedly. Trees have always loomed large

in humans’ daily life, so the metaphor is a natural one.

However, it can be pushed too far. Haeckel’s tree diagrams
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resemble real, though artistically stylised, trees. His artist even gave

them bark and roots. And he made the trunk thicker than the

branches that split off from it, which is distinctly misleading if, as

seems natural, the thickness of a branch represents the abundance

of the corresponding species. The real Tree of Life starts with a thin

trunk, and many branches are thicker than the trunk from which

they grow, as some species become wildly successful and populate

the planet in huge numbers. Haeckel also drew his trees so that
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‘higher up’ meant ‘more advanced’. Superficially, this also correlates

with ‘more recent’, until you realise that branches corresponding to,

say, bacteria have to reach all the way to the very top of the tree,

and in Haeckel’s pictures they don’t. For such purposes, a better

representation looks less like a real tree, though it still has the

characteristic branching behaviour (see Figure 20).

............
Mathematicians have their own concept of ‘tree’, and it too is a

metaphor, one that has been enshrined as a specific concept: a

diagram in which dots, which can be omitted when the junctions

are obvious, are connected by lines, and branches cannot reconnect.

This is equivalent to the requirement that no set of edges forms a

closed loop. Mathematical trees appear in a more modern

realisation of the ‘tree’ metaphor, known as a cladogram, which

comprises little more than the branch points and their timing.

Figure 21 shows a cladogram for the domestic dog and various

evolutionary relatives. Note that time runs from left to right here,

whereas it runs from bottom to top in Figures 19 and 20. Both

conventions are common. The black bear is included deliberately as

an ‘outgroup’, expected on many grounds to be far less closely

related to dogs than any other species in the diagram. This is a

technical device to permit reliable comparisons, and also a quick-
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and-dirty test of the end result: if dogs turn out to be more closely

related to bears than jackals, we would suspect something had gone

wrong and re-examine our data. We expect the outgroup to

determine the base – the trunk – of the tree.

Cladograms are assembled by computer analysis of similarities

and differences between species. These might be lists of characters,

such as ‘four-legged’ or ‘has canine teeth’. The timings here are

imprecise and give little more than the ordering of successive splits.

But it is becoming increasingly common to use lists of alleles (gene

variants) or even DNA sequences related to genes, with the timing

inferred from the ‘genetic clock’, the average rate at which

mutations occur.

I could say a lot about all this, but I don’t want to get

sidetracked into a technical area. Suffice it to say that nothing here

is guaranteed to be 100% accurate. In particular, the resulting tree is

the one that is most likely to fit the data, according to various more

or less arcane measures of likelihood. This does not mean that it is

definitely an accurate reconstruction of the actual pattern of

evolutionary descent. Of course, if more independent data can be

collected and a given tree structure survives, that increases the

likelihood that it is correct. A cladogram is a diagram encoding a

long list of statements like ‘according to the following criteria, a

crab-eating fox is more like a maned wolf than it is like a coyote’.
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............
Cladistics was introduced by the entomologist Willi Hennig in

1966, in his book Phylogenetic Systematics. As the title suggests, he

wanted to make the classification of organisms more systematic,

avoiding the often subjective decisions of traditional taxonomy. For

Hennig, the basic unit of classification was the clade, which consists

of an ancestral organism along with all its evolutionary

descendants. In a tree diagram, a clade is a single branch together

with everything that grows from it.

Conventional cladistics (the construction of cladograms) starts

with the assumption that what we are seeking is a tree. If the real

pattern of descent is not tree-like, the method will find a tree

anyway. This is not as bad as it might seem, because a tree is

usually the sensible option. With simple modifications to the

method, the tree structure itself can be tested.

The number of possible trees grows rapidly with the number of

species. There are, for example, 105 distinct trees for 5 species, and

34,459,425 for 10 species. There is even a formula: for n species, the

number of trees is 16365676� � �6(2n�3). This is super-

exponential growth – faster than any power of a specific number.

Somehow, the ‘best’ tree has to be chosen from among all these

possibilities. Naturally, there are many different definitions of ‘best’,

and for any such definition, there are many different mathematical

schemes for finding it.

The methods used have become very technical. They are carried

out using computers, because the amount of data, and the

complexity of the calculations, are greater than an unaided human

can handle. But in the early days of cladistics, a lot was done by

hand. In simple terms, the technique involves three steps: collect

data on the organisms concerned, think about suitable cladograms,

choose the best of these. The data take the form of lists of specified

characters, so that for bird species it might be things like width of

beak, length of beak, colour of feathers, size of feet. Once DNA

sequencing became practical (initially for short sequences such as

mitochondrial DNA) the data collected usually include DNA, and

today many practitioners use nothing else.

The mathematical task is now to find which tree fits the data

best. This requires defining some number, known as a metric, that

quantifies how closely the tree agrees with the data. Two species

with similar data should be close together in the tree – that is, their
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common ancestor should not be many branches back. Species with

less similar data should be separated by more branches. The actual

recipes are not as vague as this outline might suggest. Also, there

are well-established guidelines for avoiding a choice of characters

that might be misleading – something that arises in many different

organisms for reasons that do not relate to common ancestry. The

shapes of sharks and dolphins, with the same sort of tail and

triangular dorsal fin, are examples.

Suppose for example, that we are trying to sort out the

relationships among four species of cat: (domestic) cat, leopard,

tiger and cheetah. To keep ourselves honest we include an

outgroup: snail. We select four characters (way too small for a

serious analysis, but it will show how the method works), and

tabulate these against the five species, using 1 for ‘yes’ and 0 for

‘no’, as in Table 6.

As a measure of how closely different species are related (which

is the opposite of ‘distance’, so minimising distance is the same as

maximising closeness), we could use the number of entries in the

matrix that they have in common. For example, cat and leopard

agree on whiskers and purr, but not on spots and big, so the

distance is 2. In this case the small quantity of data lets us tabulate

all possible closenesses, as in Table 7.

Next, we apply some heuristics, a fancy word for ‘informed

guesswork’. The closest any two species get is 3, and that is for all

four types of feline, so we guess that the four types of cat are more

closely related to each other than to the snail. This places the snail

at the bottom of the tree, where it belongs. Next, the cat is closely

related to the tiger and cheetah (closeness 3), but less closely to the

leopard (closeness 2), so we expect to find these three at the top of

the tree. So we make the cheetah the first species to branch away

from snail. Among cat, leopard and tiger, the first two are closer to

the cheetah, so we make the tiger branch before the other two do.
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Whiskers Spots Purr Big

Cat 1 0 1 0

Leopard 1 1 1 1

Tiger 1 0 1 1

Cheetah 1 1 1 0

Snail 0 0 0 0
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At this point there are two different ways to complete the tree,

illustrated in Figure 22: either cat and leopard both branch from the

line leading to cheetah, and then split, or cheetah and cat branch

from leopard.

In the first picture, cat is closer to leopard than to cheetah, but

actually it’s closer to cheetah than to leopard, which is what the

second picture shows. So we plump for the second tree. But this

tree is not the answer: just the first step in finding it. If we had

made comparisons in a different order, for instance, we might have

been led to a different tree. To complete the construction of the

best-fitting tree, we therefore need some measure of how well the

overall tree fits the data. Then we look at variations on our

candidate tree – say, swapping leopard and tiger – and see whether

they do better. We should also swap snail with, say, tiger, to make

sure that our outgroup really is an outgroup, otherwise there’s no

point in including it in the first place.

To find the best tree, we need to work out the sums for all

possible trees. The formula tells us that there are 15 of these, so the

calculation is feasible, but in practice we work with many more
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Table 7 Closeness of the five species.

Cat/leopard 2

Cat/tiger 3

Cat/cheetah 3

Cat/snail 2

Leopard/tiger 3

Leopard/cheetah 3

Leopard/snail 0

Tiger/cheetah 2

Tiger/snail 1

Cheetah/snail 1

Fig 22 Two candidate cladograms.
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characters, and a different approach is needed, described below.

Since this example is much too simple-minded anyway, I won’t take

the analysis any further, but the general gist of the method should

now be apparent.

Because the number of possible trees grows very rapidly with the

number of species, it is not possible in practice to calculate the best-

fitting tree with perfect accuracy. However, many methods exist to

find a tree that fits almost as well as the theoretical best one. They

are borrowed from an area of mathematics known as optimisation,

often used in industry and economics.

The construction of a plausible cladogram might go like this.

First, the cladist uses their experience, or other so-called heuristic

methods, to write down a small number of trees that are expected

to be close to optimal. These are input into a computer running

suitable software, and the computer randomly generates trees that

are slight modifications of the initial guesses. It then calculates the

metric – how good the fit is – and sees which of the modified trees

performs best. The process is now repeated, with random variants of

this new tree, and continues until no random modification makes

the tree any better.

In an analogy, imagine that the metric represents height in a

landscape. The best-fitting tree corresponds to the highest point in

the entire landscape. However, there may be several hills, each with

its own local peak; only one of those will be the highest point

around. So the idea is to choose a few plausible starting points, and

then search randomly near those to see if any path leads upwards.

If so, wander a little way up the path and repeat the search. The

main problem with such methods is that if your initial guess isn’t a

good one, you may get stuck on a hill that is not the highest one

around. Searching nearby won’t improve the outcome; you have to

search further afield. There are sensible ways to do that, but none of

them are foolproof.

There is also no guarantee that the tree obtained by this method

is actually the precise evolutionary tree of the species involved. But

we can be fairly confident that if the tree shows two species to be

very closely related, or very distantly related, then much the same

holds for the genuine evolutionary tree. We can be very confident if

different data, analysed by different methods, lead to similar results.
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............
All very well, but . . . How sensible is it to model evolution as a tree?

In Wonderful Life, Stephen Jay Gould discussed the diverse soft-

bodied creatures found in fossils from the Burgess Shale, a deposit

of rock strata in Canada. These deposits, and the fossils within

them, come from the time of the Cambrian explosion, a sudden

burst of diversity that led to the evolution of many different, highly

complex creatures. Unusually, the fossils preserve many soft features

that would normally have rotted away. According to Gould’s

interpretation, the evolutionary descent of the Burgess Shale fossils

looks more like a bushy savannah than a single tree. However,

bushes corresponding to species that have all become extinct do

not reach to the present day, and so cannot be reconstructed from

present-day data.

In fact, Gould suggested that the Burgess Shale fauna contained

more phyla – one of the largest units into which life forms are

classified – than currently exist. Humans, for example, belong to

the phylum of chordates, creatures that develop a notochord as an

embryo. He went on to deduce that the evolution of humanity

involved a random ‘accident’ at the time of the Cambrian

explosion. Pikaia, which among the Burgess Shale fauna is the best

candidate ancestral species for all chordates, left surviving

descendants. Anomalocaris, Opabinia, Nectocaris, Amiskwia and

various other organisms, each representing a distinct (and now

extinct) phylum, did not – even though all these creatures were

happily coexisting, and there seems to be no good reason to expect

any one of them to survive and the others to die out.

It now seems that Gould inadvertently exaggerated the

differences among the fossils he considered, and many are in fact

related to existing creatures, contrary to what he thought. However,

it is also true that many equally baffling Burgess Shale fossils have

not yet been analysed at all, so Gould’s theory might yet be revived.

At any rate, if you look for a tree you will find a tree, so for some

questions it makes sense not to start by assuming that a tree exists.

............
In a genetic interpretation, the Tree of Life represents how genes

pass from (organisms in) ancestral species to (organisms in) their

descendant species. However, there is a second way for genes to be
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transferred between organisms. It was discovered in 1959 by a

Japanese team, which discovered that antibiotic resistance could be

transmitted from one species of bacterium to a different species.1

This phenomenon is known as horizontal (or lateral) gene transfer,

whereas the conventional transmission of genes to descendants is

called vertical transfer. The terms are derived from the usual tree

diagram of evolution, with time running vertically and species-type

horizontally, and have no other significance.

It soon became apparent that horizontal gene transfer is

widespread among bacteria, and not uncommon in single-celled

eukaryotes. This changes the paradigm for evolution among such

creatures, because it introduces a different way for genomes to

change. The classical concept of genetic changes arising through

mutations (including deletions, duplications and reversals, as well

as point mutations) in the genome of an organism in a single

species must be broadened to allow the insertion of segments of

DNA from a different species altogether. There are three main

mechanisms for such transfer: the cell may incorporate alien

genetic material through its own workings, alien DNA may be

brought in by a virus, or two bacteria may exchange genetic

material (‘bacterial sex’).

There is also some evidence that multi-celled eukaryotes may

have been the recipients of horizontal gene transfer at some stage

in their evolutionary history. The genomes of some fungi, in

particular yeast, contain DNA sequences derived from bacteria. The

same goes for a particular species of beetle that has acquired genetic

material from Wolbachia bacteria, which live inside the beetle in a

state of symbiosis. Aphids contain genes from fungi which let them

manufacture carotenoids. The human genome includes sequences

derived from viruses.

These effects certainly change our view of how genetic changes,

one of the driving forces behind evolution, can occur. They imply

that many creatures’ genetic ancestry involves more than their

obvious evolutionary ancestors. A number of biologists have argued

that this forces us to abandon the Tree of Life metaphor.

Scientifically, this poses no great obstacles: the Tree of Life is not

sacred, and if the evidence indicates that it is wrong, it should be

discarded. Our view of evolution would then be different – at least

in so far as the standard metaphor goes – but science often
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progresses by revising previous ideas. So does horizontal gene

transfer wreck the Tree of Life metaphor?

At first sight the answer seems to be ‘yes’. Horizontal gene

transfer can introduce closed loops, by linking two distinct

branches of the usual tree. And then it’s not a tree.

However, the branches in Haeckel’s Tree of Life, and in

cladograms, represent how species branch, either historically or

conceptually. They don’t represent individual organisms. Horizontal

gene transfer moves a snippet of DNA from one organism to

another. So this new link is not a branch on the species tree. A cow

becomes a cow with a bit of alien DNA, but it’s still a cow. Of

course, the alien DNA affects what it might evolve into in future,

but that comes later, if at all.

In a diagram with conceptual branches showing how organisms

or species are connected by changes to their DNA, horizontal gene

transfer does throw in some extra connections that spoil the tree

structure. But this doesn’t mean that the original Tree of Life

metaphor was wrong. It just means that we’re talking about a

different metaphor.

In short, horizontal gene transfer has no effect on the Tree of

Life for species. It has a small effect on the tree for organisms, and a

bigger effect on the tree for DNA. There is perhaps one exception to

these statements: when the species are bacterial or viral. Then

horizontal gene transfer is so common that even the concept of a

species is questionable.

Speciation, considered for individuals, is probably a very

complicated intermingling of edges. Representing the speciation

event as a simple branch point almost certainly oversimplifies the

process, and leads to questions and distinctions that may not be

appropriate (such as ‘exactly when did the two species split’?). Some

complex system models of speciation introduced by Toby Elmhirst

under the name BirdSym exhibit very complex cascades of changes

in phenotype during speciation events. The pictures look more like

braided rivers than simple branch points.

............
Might there be not one Tree of Life, but several? Darwin left this

possibility open in the Origin. The general idea of evolution would

not be greatly affected, whatever the answer, but there is an
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evolutionary reason to prefer a single tree. Once life gets going – by

whatever method – it reproduces, and this makes any subsequent

independent origin unlikely to get very far. The new kids on the

block have to compete with those that are there already, who have

an advantage because they have become pretty good at playing the

evolutionary game. So we would expect a single origin, and would

need new ideas to explain a multiple one.

In 2010 Douglas Theobald used methods from cladistics to test

this hypothesis, known as ‘universal common ancestry’, and the

results came down firmly in favour of a common ancestry for all

present-day life.2 The word used here is ‘ancestry’, not ‘ancestor’,

with good reason. Theobald’s model permits the last universal

common ancestor to be a population of different organisms, with

different genetics, living at different times. His method involves the

amino acid sequences of 23 proteins, found across all three domains

of life – archaea, prokaryotes and eukaryotes. You can think of

them as molecular probes that cover the entire range of living

creatures, and go way back into deep time. Having chosen the

proteins, the next step is to calculate evolutionary trees and sets of

several trees. The final step is to compare how likely these results

are, given the data.

Theobald compared a single tree, perhaps with additional

horizontal gene transfer, with (say) two trees, which may or may

not be linked together by horizontal gene transfer. His result is

dramatic: a single tree is about 102,860 times as likely as two or more

trees (see Figure 23). To put this in perspective, it is like randomly

shuffling a pack of cards and finding that the cards are arranged in

perfect order, ace to king for spades, hearts, clubs and diamonds . . .

and repeating this 42 times.
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gene transfer and are not part of the tree.
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10 Virus from the Fourth
Dimension

.................................

Geometry became a well-developed and powerful branch of

mathematics through the work of ancient Greek philosophers and

mathematicians. The most famous of the ancient Greek geometers,

though not the most talented, was Euclid of Alexandria.1 He put

geometry on a systematic basis in his Elements, a logical

development of geometry written around 300 BC. It became the

most successful textbook ever written, with thousands of editions

since it first saw print in Venice in 1482.

The climax of the Elements is the classification and construction

of the five regular solids: the tetrahedron, cube, octahedron,

dodecahedron and icosahedron. The names, cube aside, refer to the

number of faces: 4, 6, 8, 12 and 20, respectively.2 The cube has

square faces, the dodecahedron has pentagonal ones and the other

three are made from equilateral triangles (see Figure 24).

In most areas of science, discoveries made 2,300 years ago are

no longer terribly relevant – although Archimedes’ principle about

floating bodies and his law of the lever still have their uses, and
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Fig 24 The regular solids. Left to right: Tetrahedron, cube, octahedron,

dodecahedron, icosahedron.



they are about that old.3 But mathematics builds new discoveries on

top of previous ones, and once something has been proved true it

remains that way. So it tends to hang around. New standards of

rigour come into being, definitions are made more watertight, new

interpretations are introduced, and topics that were once flavour of

the month may sink into obscurity, but fundamental mathematical

ideas are pretty much permanent.

The icosahedron is a case in point. It has always played a role in

pure mathematics: in 1908 the French mathematician Charles

Hermite discovered how to use the geometry of the icosahedron to

solve algebraic equations of the fifth degree. But until the twentieth

century there were no significant applications of the icosahedron to

the real world, because it did not seem to arise in nature. Since

1923 it has appeared in the design of objects: the engineer Walther

Bauersfeld used it as the basis of the first planetarium projector, and

the architect Buckminster Fuller reinvented the idea and used it to

design geodesic domes. It also underlies the geometry of the

modern football, which is an elaboration on the icosahedron: you

truncate it – cut off the corners – to make it more rounded (of

course). The same elaboration captures the structure of

buckminsterfullerene, a recently discovered molecule consisting of

60 atoms of carbon and nothing else, which form a roughly

spherical cage (see Figure 25).

Fig 25 Left: Icosahedron. Middle: Truncated icosahedron and football. Right:

Buckminsterfullerene.

............
When electron microscopy and X-ray diffraction methods got

going, however, Euclid’s 20-faced solid became a regular feature of

biology. The context was viruses – diminutive structures too small

to be seen in an optical microscope, but visible in a more powerful
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electron microscope. Viruses are a major cause of diseases in

humans, animals and plants; the Latin word ‘virus’ means ‘poison’.

Viruses are a bit larger than most biological molecules, but a typical

virus is about one-hundredth the size of a typical bacterium. Since

volume varies as the cube of length, you could pack a million

(10061006100) viruses inside a single bacterium if no space were

wasted. There are about 561030 bacteria on Earth, but the number

of viruses is about ten times that. Neither of these figures is

particularly accurate, and both may be underestimates, but they

give a general feel for the numbers. Viruses outnumber humans

1022 to one.

Bacteria definitely qualify as life, because they can reproduce

using their own genetic processes. Viruses may or may not qualify:

they have genes – DNA or RNA sequences – but they cannot

reproduce using just their own genes. Instead, they reproduce

explosively by subverting the reproductive biochemical machinery

of a bacterium, much as a document can reproduce through the

intermediary of a photocopier. (Actually, a few viruses can replicate

unaided, but these are exceptional.) Some biologists argue that the

definition of life should be extended to include viruses.

Over 5,000 distinct types of virus have been found since

Martinus Beijerinck made the first discovery, of the tobacco mosaic

virus, in 1898, and indirect evidence tells us that there must be

millions more. Most viruses have two main components: genes

formed from DNA or RNA, enclosed within a protein coat known as

a capsid. The capsid is typically formed from identical protein units,

known as capsomers. Some viruses also possess an extra layer of

lipids (fat) for protection when outside a cell.

As early as 1956, it was noticed that the majority of viruses are

either icosahedral or helical: shaped like a football or shaped like a

spiral staircase. Some have a more complex structure: for example,

enterobacteriophage T4 has an icosahedral head, a helical stalk and

a hexagonal baseplate from which fibres extend. It looks like a lunar

landing molecule (see Figure 26). But the main form observed is

Euclid’s elegant icosahedron, which, devoid of practical application

for more than two thousand years, turns out to be just right for

making a virus (see Figure 27).

Profile Books - Maths of Life Data Standards Ltd, Frome, Somerset – 10/2/2011 01 Maths of life Chapters.3d Page 140 of 336

140 // Mathematics of Life



Fig 26 Enterobacteriophage T4.

Fig 27 Icosahedral structure of two viruses. Left: Foot-and-mouth disease virus

differs from its mirror image and has 60 symmetries. Right: Herpes simplex

virus is mirror-symmetric and has 120 symmetries.

There is a hand-waving explanation based on minimising

energy, which goes like this. Virus coats are typically constructed

from many copies of a roughly spherical protein molecule. A

collection of such molecules has the least energy – something that

nature finds desirable – if it is as close as possible to being a sphere.

Soap bubbles are spheres, because this is the shape that has the least

surface area, hence the least energy of surface tension, while

enclosing a given volume. Virus coats can’t form exact spheres,

because the component protein units cause bumps. (Try to fit a

hundred tennis balls together to make a smooth sphere.) So they do

the best they can. Of all Euclid’s solids, the icosahedron is closest to
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a sphere. The truncated icosahedron is even more spherical, hence

its use for footballs (and as a bonus, the panels become even

rounder when the ball is inflated). So evolution and FIFA (the

Fédération Internationale de Football Association) independently

came up with the same shape, for the same reason. Until the 2010

World Cup, that is, when the balls were made in a different way –

and everyone complained.

............
At the heart of the icosahedron, indeed of all five regular solids, is

the concept of symmetry. Since the early 1800s, mathematicians

have developed a profound theory of symmetry, with applications

throughout the sciences, known as group theory. I could spend a

book discussing how group theory came about (and I have done4).

The key point is that a symmetry of an object is not a thing, but a

transformation, whose application leaves the object looking exactly

the same.

Put baldly, that sounds like gobbledegook: a symmetry

transforms the object but leaves it looking exactly the same. Yes,

and there are little green men on the Moon but they’re invisible so

nobody can ever detect them . . . Right. Actually, the statement

makes sense if properly construed. A transformation is a way to

rearrange things or move them around. In this case, the relevant

transformations are rigid motions, especially rotations and

reflections. Now, think of a square, which intuitively has quite a lot

of symmetry. For example, all four corners are the same shape. One

way to capture this feature is to rotate the square about its centre

through a right angle. The result is an identical square, in an

identical orientation. If you shut your eyes while the square was

being rotated, and it had no markings on it, then when you opened

them again you wouldn’t notice that anything had happened. So

the transformation ‘rotate through a right angle’ is a symmetry of

the square. In all, there are eight such symmetries: leave the square

alone; rotate it through one, two or three right angles; reflect it in

either diagonal; reflect it in either line joining the midpoints of

opposite sides.

These transformations have a pleasant kind of ‘closure’: perform

any two of them in turn, and the result is one of the same eight

symmetries. They are said to form a group. The same is true for the
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symmetries of any other object. A circle is much more symmetric

than a square, and has infinitely many symmetries: rotate through

any angle, reflect in any diameter. But again, any two symmetries

performed in turn have the same effect as a single symmetry. Rotate

by 148 and then rotate by 538: the result is the same as a single

rotation through 678, which is 148þ538.
Euclid’s regular solids have rich and beautiful symmetry groups.

The tetrahedron has 24 symmetries, the cube and octahedron have

48, and the dodecahedron and icosahedron have a massive 120.

The symmetry properties of these solids are what make them so

prevalent in modern pure mathematics. Notice that different solids

here, such as the dodecahedron and icosahedron, can have the

same number of symmetries. There is a good reason: if you draw a

dot in the middle of each face of an icosahedron, you get the 20

vertices of a dodecahedron. Similarly, if you draw a dot in the

middle of each face of a dodecahedron, you get the 12 vertices of

an icosahedron. Suitable geometric relations between shapes can

give them the same symmetry groups.

............
The architecture of the viral capsid is important biologically: in

particular, it helps with the analysis of images of the virus (such as

those obtained by X-ray crystallography) and the construction of

models of how the virus assembles. The icosahedral structure of

viruses does not just determine the overall shape: it is inherent in

the arrangement of the protein units. Until recently the main

theoretical description of capsid architecture was the one derived in

1962 by the American and British biophysicists Donald Caspar and

Aaron Klug.5

Icosahedral virus coats are made from triangular arrays of

capsomers, fitted together like the faces of an icosahedron. Each

triangle is made from row upon row of capsomers, arranged like the

balls at the start of a game of snooker or pool. Looking more closely

still, that’s not quite the full story: the rows of capsomers can be

skewed, so that some rows run into the edge of the triangle and

warp across it into the next triangle. Nature obviously has no

trouble making such shapes, but they are slightly odd

mathematically, and the first step in understanding the patterns is
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to work out their mathematical status and find their common

features.

Like pool balls, most capsomers are surrounded by six others

(hexamers). However, some are surrounded by only five others

(pentamers). It turns out that this condition is forced by geometry.

If we represent the virus capsid as a polyhedron by placing vertices

at the capsomer and joining adjacent capsomers by edges, then

hexamers are vertices lying on 6 edges, and pentamers lie on 5

edges. This fact alone imposes mathematical conditions on the

possible number of capsomers. Leonhard Euler, one of the all-time

mathematical greats, discovered a formula relating the number of

faces, edges and vertices of a solid. Namely, for any polyhedron

topologically equivalent to a sphere,

F � Eþ V ¼ 2

where F is the number of faces, E the number of edges and V the

number of vertices. For example, a cube has F¼6, E¼12, V¼8, and

6�12þ8¼2. This general fact is known as Euler’s formula for

polyhedra. A simple calculation using the formula shows that in

any virus coating composed purely of hexamers and pentamers,

there must be exactly 12 pentamers. The method doesn’t specify

where they occur, but it proves that they have to be present.

Caspar and Klug followed up these topological clues. They

looked first at helical viruses, and then went on to consider

icosahedral ones. Here the basic mathematical problem is to pack

identical units together to form shapes that are close to spherical,

bearing in mind that the relation between each unit and those

adjacent to it is likely to be restricted by the available chemical

bonds. The simplest case is when there is only one such

relationship; geometrically, this means that each unit is surrounded

by exactly the same configuration of adjacent units. This in turn

implies a high degree of symmetry, which for brevity I’ll call

‘perfect symmetry’, and immediately suggests considering the

regular solids. Among these, the icosahedron is the most plausible

candidate: of all the regular solids, it forms the best approximation

to a sphere. In addition, electron microscope images of several

viruses appeared to be icosahedral, although Caspar and Klug note

that this ‘does not necessarily mean that the symmetry down to the

molecular level is icosahedral’.

With the requirement of perfect symmetry, an icosahedral
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arrangement can clearly accommodate 12 or 20 units: 12 if they are

situated at the corners, 20 if they are placed at the centres of the

faces. The largest number of units that can fit together so that each

unit has the same immediate neighbourhood is 60 (see Figure 28).

This increases to 120 if mirror images are considered identical, but

biological molecules tend to have a specific ‘handedness’, so this is

unlikely. Again, the symmetry is icosahedral.

It follows that the number of units in a virus with perfect

symmetry must be 12, 20 or 60. However, no viruses known to

Caspar and Klug employed these numbers, and most of them had

more than 60 units. Indeed, none of them had a multiple of 60

units, which might be realised by relaxing the requirement of

perfect symmetry a little. The most likely way out is to relax the

requirement even further, and Caspar and Klug found inspiration

from an unusual source: the architect Buckminster Fuller. Fuller had

a liking for geometric forms, and the geodesic dome is one of his

more famous ideas, a roughly spherical enclosure made by fitting a

large number of triangular panels together. Such a dome featured as

a pavilion for the 1964 New York World’s Fair, and hemispherical

versions can be found at the Eden Project in Cornwall.

You can’t make a geodesic dome from equilateral triangles

arranged six to a vertex, because they would form a flat plane.

Fuller, following various predecessors, realised that triangles that are

nearly equilateral can fit together to make a dome. Such

arrangements do not have perfect symmetry; instead, triangles have
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two different kinds of neighbourhood. Consistency with Euler’s

formula demands that some must be arranged so that five of them

fit round a vertex, while the rest fit six to a vertex. Caspar and Klug

realised that although adjacent units are generally held together by

the same arrangement of chemical bonds, these bonds can be bent

by a small amount, so that the bond angles can be slightly different

for units that are not symmetrically related. Experiments performed

by the Nobel Prize-winning chemist Linus Pauling suggest that

bond angles can be changed by about 58 from their average values,

which allows some flexibility.

Caspar and Klug were led to an unorthodox range of solids

called pseudo-icosahedra, familiar to expert geometers but not to

most mathematicians. They are solids that resemble icosahedra but

are less regular. They can be constructed from a tiling of the plane

(see p. 154) by equilateral triangles. First, choose two numbers a

and b (see Figure 29). Starting from a vertex, move a units to the

right and b units at 1208 to this direction to get a second vertex;

then locate the third vertex to form a large equilateral triangle

containing many vertices of the original tiling. Twenty of these

triangles can then be fitted together to form an icosahedral

polyhedron with 10(a2þabþb2)þ2 vertices, of which 12 are

pentamers and the rest hexamers. The pentamers always lie on the

axes of icosahedral symmetry (the ‘corners’). Examples of pseudo-

icosahedral architecture are given in Table 8.

The Caspar–Klug theory applies to many different icosahedral

viruses, but there are exceptions. Forty years ago, Nicholas Wrigley

noticed that some icosahedral viruses do not have this pseudo-
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icosahedral architecture. Instead, they can be described by so-called

Goldberg polyhedra, which are hexagonal packings on the surface

of an icosahedron.6 However, even these structures are insufficient

to classify the arrangements of capsomers in icosahedral viruses: for

example, in 1991 Robert Liddington and colleagues pointed out

that polyoma virus has many more pentamers than the 12 found in

pseudo-icosahedra and Goldberg polyhedra.7 So some more general

mathematical description was needed.

By now, biologists’ minds were on other things, but

mathematicians were still puzzling over the exceptions. Around the

year 2000 the German-born mathematician Reidun Twarock and

her research team at the University of York developed a more

general theory of the geometry of viruses based on symmetry

principles closely analogous to the group theory of the

icosahedron.8

There was only one difference: now the geometry took place in

four dimensions, not three.

............
The fourth dimension . . .

It sounds like something from a science-fiction story, a hidden

realm adjacent to our everyday world in which all manner of

strange creatures lurk . . . Indeed, this is how the concept is

portrayed in H.G. Wells’s The Time Machine of 1895, in which the

Time Traveller is taken to the far future of humanity, now separated

into the languid Eloi and the grotesque Morlocks. But Wells based

his novel on a topic from real science that was becoming popular at

the time. He credited the idea to ‘student discussions in the

laboratories and debating society of the Royal College of Science in
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Table 8 Numerology of pseudo-icosahedral viruses.

{a,b} No. of capsomers Virus

{1, 1} 32 Turnip yellow mosaic

{2, 0} 42 Bacteriophage ΦR
{2, 1} 72 Rabbit papilloma

{1, 2} 72 Human wart

{3, 0} 92 Reo

{4, 0} 162 Herpes, chickenpox

{5, 0} 252 Adenovirus type 12

{6, 0} 362 Infectious canine hepatitis
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the [eighteen-]eighties.’ As the story opens, the Time Traveller

invokes the fourth dimension to explain why such a machine is

possible:

There are really four dimensions, three which we call the three

planes of Space, and a fourth, Time. There is, however, a

tendency to draw an unreal distinction between the former

three dimensions and the latter, because it happens that our

consciousness moves intermittently in one direction along the

latter from the beginning to the end of our lives . . . But some

philosophical people have been asking why three dimensions

particularly – why not another direction at right angles to the

other three? – and have even tried to construct a Four-

Dimensional geometry. Professor Simon Newcomb was

expounding this to the New York Mathematical Society only a

month or so ago.

It is a matter of historical record that Newcomb, one of the most

eminent American mathematicians of his day, published on the

topic of four-dimensional space from 1877, and he spoke about it to

the New York Mathematical Society in 1893. Four dimensions (and

more) were important research topics in mathematics and physics.

Some Victorian theologians saw ‘the’ fourth dimension as a

convenient location for God, contiguous with our universe at every

point, yet outside it, and affording the Deity a complete view of the

entire universe in a single glance. But then the hyperspace

theologians decided that the fifth dimension would be even better,

the sixth better still . . . and that nothing short of the infinitieth

dimension would serve for an omnipotent, omnipresent Deity. At

much the same time, spiritualists found the fourth dimension

equally suitable as a home for the spirits of the dead; believers in

ghosts had a similar view, with the obvious change in the identity

of the entities that inhabited this hidden dimension; various cults

and pseudoscientific bodies found effective ways to rationalise their

own beliefs by throwing in a few references to the fourth

dimension; and a few outright crooks used topological trickery to

‘prove’ that they had access to the fourth dimension and con

people into giving them money.

It was the mathematicians’ fault, really – they had set this

particular ball rolling, and physicists picked it up and ran with it.

Then popular culture, unrestrained by the need to stay close to

reasonable speculation, pushed the idea to the limits – much as the
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more recent media image of cloning was populating the planet with

exact copies of human beings at a time when biologists were failing

to duplicate a cell. With Dolly the Sheep, fact began to catch up

with fiction, but cloned humans do not yet exist.

The fourth dimension has fared much better, and if anything,

fact is now ahead of fiction – except when it comes to time travel.

The concept has been entirely respectable in mathematics and

physics for over a century, and scientists now routinely employ

mathematical concepts of any number of dimensions – four, ten, a

hundred, a million. Even infinity. The imagery of multidimensional

spaces has spread to biology and economics, together with the

associated mathematical techniques. The idea may sound

outlandish, but it is actually very natural. Its main relevance to this

chapter, though, is a more direct application of four-dimensional

geometry to, of all things, viruses. Strange though it may seem, the

fourth dimension and its higher cousins are providing important

insights into how viruses pack their protein units together.

............
When mathematicians start talking about familiar terms in ways

that make no sense, it usually turns out that they have either

appropriated the word and given it a totally different meaning, or

they have extended the usual meaning to a wider context. A group

is not merely a collection of similar objects, a ring has nothing to

do with jewellery or even with circles, and you won’t find sheep

grazing in a mathematical field. Terms like ‘dimension’, ‘space’ and

‘geometry’ fall into the second category, and are easier to

misunderstand because the new meaning is not so obviously

different from the old one.

The unwritten rule for extending the meaning of a word is that

it should retain its original meaning in its original context. It is all

right to introduce a new concept of ‘space’, for example, as long as

the familiar spaces of Euclid’s geometry – the plane and, well, space

– are still included. Provided this convention is obeyed, you won’t

get confused by applying the new meaning in the old context.

Though you might get confused in the new context if you assume

that specific features of the old one still hold good – such as ‘space’

being something that humans can or do live in.

‘Dimension’ is a case in point. The plane has two dimensions,
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our familiar notion of space has three. Any extension of the word

to other ‘spaces’ should preserve those facts. However, the

traditional definition – the number of independent directions – is

not sacred. It’s not even sacred in the traditional contexts: you can

change the definition as long as the answers are still two and three

respectively.

Traditionally, we sometimes speak of individual ‘dimensions’.

Length is a dimension, so is width, so is height. Some care is

needed, because the same word can also mean ‘size’: the longest

dimension (in that sense) of a box is whichever of these three is

biggest, but actually the longest ‘dimension’ is the diagonal, which

is bigger than any of them. Mathematics and science have settled

on a more general notion of dimension in which we can safely say

that some space has, say, ten dimensions, without saying what these

dimensions are. The emphasis has shifted: the space has dimension

(or dimensionality) 10. We don’t define things called dimensions

and count them to show there are ten of them. That said, lists of

ten things do exist – but we don’t call the things dimensions. We

call them coordinates.

Mathematicians did not introduce spaces of many dimensions

for fun, or to impress people. They did so because they needed

them. By the end of the nineteenth century, a variety of

developments, motivated by everything from pure geometry to

celestial mechanics, all seemed to point towards the same new idea.

At much the same time, physicists started to realise that many key

discoveries made more sense if they were formalised within a

‘space-time’ of four dimensions: the three traditional dimensions of

space, plus an extra one of time. But time was not the fourth

dimension: just one possibility.

To cut a long story short: the dimension of a space is the number

of independent coordinates needed to specify the things that belong

to it. Spaces with many dimensions provide a convenient way to

describe systems in which many distinct variables can be set to

whatever values we desire. The ‘space’ of all such choices has a

natural structure – a direct generalisation of the familiar

mathematics of two and three dimensions. In particular, we can

specify what it means for two ‘points’ in such a space to be close

together: corresponding variables should have values that are close

together.

Moreover, the ‘points’ need not actually be points. The plane is a
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set of points, but it can also be thought of as, say, a collection of

ellipses. The set of all ellipses in the plane is an interesting

mathematical object in its own right. How can you specify an

ellipse? Let’s do it in Euclidean geometry, where the pictures are

more familiar. You need to know:

. where the centre of the ellipse is (2 numbers),

. how long it is (1 number),

. how wide it is (1 number), and

. at what angle it is tilted (1 number).

So in all, it takes five numbers to specify an ellipse (see Figure 30).

The ‘space’ of ellipses is five-dimensional. And it is a space, in

the sense that if you change the numbers representing some ellipse

by small amounts, you get an ellipse that is ‘nearby’. It looks very

similar. And the smaller the change, the more similar it looks.

From one point of view, the plane is two-dimensional. From

another, it is five-dimensional. But it’s the same plane either way,

so it makes no sense to maintain that a two-dimensional space

exists but a five-dimensional one doesn’t. Here, they are two aspects

of the same thing. Aside from familiarity and tradition, there is no

good mathematical reason to prefer the set of points to the set of

ellipses. Which viewpoint is best depends on what questions you’re

asking. It was for this kind of reason that mathematicians came not
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only to tolerate spaces of higher dimensions, but to feel lost

without them.

............
This simple idea turned out to be so useful that it rapidly invaded

physics. Today’s particle physics, for instance, cannot even be set

up properly without using spaces with pretty much any number of

dimensions. Engineers got in on the act, too. If you are trying to

calculate the stresses and strains in a grid of 100 metal girders, then

you have 100 forces to work with. Since you don’t know what they

are until you do the sums, you are conceptually looking at lists of

100 arbitrary numbers and trying to select the correct one. That is,

you are seeking a point in a space of 100 dimensions.

Engineers find that terminology off-putting, and prefer the more

physical concept of ‘degrees of freedom’. How many different

things can vary independently? But it’s the same idea. Thinking of

all possible configurations of some complicated system as a ‘point’

in a ‘space’ of all potentially possible configurations gives such a

vivid image, and such a conceptual boost, that it has pervaded

every branch of science – and beyond.

A case in point is DNA-space. A sequence of (for simplicity) ten

DNA bases permits four choices (A, C, G, T) at each separate

location. So ‘DNA-space’, the ensemble (as physicists say) or set (as

mathematicians say) of all possible such sequences can be thought

of as a ‘space’ of ten dimensions, with each individual dimension

taking four possible values: A, C, G or T. Replace ‘ten’ by any other

number, such as a million, and the same holds good.

This space has a natural geometry. Two sequences are close to

each other if they differ in a small number of locations. For

instance, AAAAAAAAAA is very close to AAAAACAAAA, a bit further

from AAAAACTAAA, further still from AAGAACTAAA, and so on.

The ‘distance’ between two sequences is the number of bases at

which they differ. This notion resembles distance in the two-

dimensional plane or ordinary three-dimensional space in many

respects, although it differs in others. If you are interested in the

genetic basis of evolution, whose simplest manifestation is ‘point

mutations’ at which one base changes, this notion of distance is

ideal: it equals the minimum number of mutations that could lead

from one sequence to another.
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Biologists have found the concept of DNA-space, or sequence

space, very informative. It matches a similar idea used in computer

science to describe digital messages in information theory.

Biologists are not alone. Economists view the prices of a million

goods as a point (or ‘vector’) in a hypothetical space of a million

dimensions, and the mathematical processes they use, such as

optimisation methods, are explicitly motivated by this image.

Astronomers, discovering they need 18 numbers to describe the

state of the Earth–Moon–Sun system, work in an 18-dimensional

mathematical space. The geometry of this 18-dimensional space

tells them a lot about how such a three-body system behaves.

The propensity of viruses to undergo genetic mutations at the

drop of a hat is informed by this kind of use of multidimensional

spaces. It formalises the use of similarities in DNA sequences to

infer past evolutionary changes, and it classifies viruses into

‘strains’, different variants that arise by mutation or exchange of

genetic material. These changes are important in medicine, because

vaccines that work for one strain may be ineffective for a different

strain.

You probably recall the swine flu pandemic of 2009, when a

flurry of deaths in Mexico announced the arrival of a new strain of

influenza virus. Sequencing revealed that this strain, known as

H1N1, had evolved by combining genetic material from four

previous strains of flu. Some time earlier, three strains had

combined in this way: one occurred in pigs, one in birds and one in

humans. This new strain went largely unnoticed until it combined

with another pig flu virus. At that point, the World Health

Organization took charge and declared the virus to be a global

pandemic. Governments worldwide rushed to order suitable

supplies of vaccine, tailored to the new strain. In the event, H1N1

proved less dangerous than feared; by August 2010 only 15,000

people had died from the virus – far less than the millions

trumpeted by the tabloid press, and less than the numbers typically

killed by ordinary seasonal flu – and the response has since been

criticised as overkill. But H1N1 was unusual: it had worse effects on

the young than on older people who had previously been exposed

to a related strain and built up immunity. It is unclear whether the

authorities overreacted, or whether most of us got lucky.
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............
Sequence space uses multidimensional geometry as a descriptive

framework, and similar ideas could be used without the associated

geometric language. Twarock’s work on viruses involves a deeper

use of multidimensional geometry: employing detailed theorems

about the intricate geometry of spaces with four or more

dimensions to understand the structure of viruses.

In a series of papers, especially one published in 2004, Twarock

developed a more general version of the Caspar–Klug theory,

applicable to the polyoma virus and other exceptions.9 This

approach, known as viral tiling theory, allows the capsomers to be

arranged in more general ways than the ‘pool ball’ hexagonal

lattice. In particular, the pentamers need not lie at the vertices of

the underlying icosahedron. Viral tiling theory is not

straightforward, because regular pentagons do not tile the plane – if

you try to fit them together to cover the plane, they either overlap

or leave gaps – and crystallographic lattices in two and three

dimensions cannot have fivefold rotational symmetry.

A key insight arose indirectly through the discovery of

quasicrystal patterns, such as the famous Penrose tilings (see

Figure 31). In patterns of this kind, the tiles fit together according

to specific mathematical rules, but they do not form a lattice, that

is, a pattern that repeats the same arrangement over and over again

like a wallpaper pattern. A Penrose tiling covers the infinite plane

without gaps or overlaps, using two types of tile. The resulting

patterns incorporate the fivefold symmetry of the regular pentagon.

Though these are not in fact lattice patterns, they can be
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understood using a mathematical trick: they are representations in

2D and 3D spaces of suitable parts of lattice patterns in spaces of

higher dimension.

This idea can be understood through an analogy: constructing

non-lattice patterns in 2D from lattice patterns in 3D. The lattice

patterns in 2D are based on tiling by parallelograms: certain shapes

of parallelogram lead to patterns with more symmetry than the rest,

notably the square and hexagonal lattices. Figure 32 shows a tiling

of the plane (2D) by two different shapes of tile: equilateral triangle

and hexagon. This is not a lattice pattern, which among other

things would use a single shape of tile, but it is very symmetric and

regular nonetheless.

It turns out that we can construct the same tiling pattern from a

lattice, provided we move into 3D space. The lattice required is the

cubic lattice, the simplest of all 3D lattices. It is like a 3D

chessboard with cubes in place of the traditional squares. The most

obvious feature of a cube is its square faces, but the pattern we’re

considering doesn’t involve squares: it is made from equilateral

triangles and hexagons. Nonetheless, it is concealed within the

cubic lattice pattern. In fact, if you slice this 3D pattern using a

plane that is tilted to run through the midpoints of three adjacent

edges of one of the constituent cubes, you get exactly the required

2D pattern.

Here, we obtain the more complex lower-dimensional pattern

by taking a slice through a simpler 3D pattern. Another strategy is

also available: to project parts of the 3D pattern onto a suitable

plane, much as a movie image is projected from the film onto the
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screen. Better still, both sections and projections can be used. The

details don’t greatly matter: the mathematical advantage is that we

can understand complex patterns in terms of simpler ones. The

complexity of Penrose tilings, for example, can be simplified in this

way. The price we pay is having to extend the pattern into a

higher-dimensional space, but as far as mathematicians are

concerned, this is harmless, easy and standard. It may sound a big

deal to anyone not used to this trick, especially when the spaces

involved are 4D or 5D, but algebraically it makes good sense, and

that justifies using it, as well as providing a way to do the sums.

Twarock wondered whether it was possible to use this trick on

icosahedral viruses, which are non-lattice patterns in 3D space. That

means going to 4D space, at the very least – perhaps more. The

powerful mathematics of symmetry groups can be brought to bear,

and it shows that the smallest dimension of a lattice with

icosahedral symmetry is not 4, but 6.

Although 6D spaces may seem irrelevant to biology, it is worth

remembering that the ingredients of a mathematical description

often lack direct physical counterparts. For example, the motion of

the Earth and Moon around the Sun is most naturally represented

as a dynamical system in 18D space, with 3 position and 3 velocity

coordinates for each body, even though any configuration of the

bodies lies in ordinary 3D space. So the geometry of lattices in

‘unphysical’ spaces of high dimension should be considered as a

useful technique for determining 3D non-lattice patterns with

special features, not as a literal description of a physical process.

The icosahedral group belongs to an important class of

symmetry groups known as Coxeter groups after the geometer H.S.

M. (‘Donald’) Coxeter,10 which are higher-dimensional analogues of

a kaleidoscope. Working with Tom Keef, Twarock has applied this

class of groups to the structure of icosahedral viruses in terms of a

6D lattice with icosahedral symmetry known as D6. By adapting the

methods from Penrose tilings, they have constructed a class of

possible virus structures defined as projections from the 6D lattice

D6 into 3D space.

The projection of the entire D6 lattice would fill space densely

with points, but the same issue arises for Penrose tilings, and the

answer is to consider only a subset of D6, a slice with non-zero

thickness, so to speak, and to project only that part of D6. This ‘cut

and project’ technique yields all the pseudo-icosahedra, but also
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additional structures with more than 12 pentamers. In particular

the structures of polyoma virus, Simian virus 40, and bacteriophage

HK97 are now accounted for.

The mathematical techniques employed here range from well-

established ideas in group theory and crystallography, through

more modern contributions such as Coxeter groups, to recent

innovations inspired by Penrose tilings. The resulting structures

have definite biological interest. One way to attack a virus is to

interfere with its assembly process, and the geometry of the fully

assembled virus provides clues about potential weak points in this

process. Viral tiling theory goes beyond the Caspar–Klug approach

by allowing different types of bonding among capsomers, so it

represents the actual molecular configurations more closely. It also

opens up new ways of thinking about tubular malformations, where

the virus assembles into a tube rather than an approximate sphere.

For example, if changes in the chemical environment of an

assembling virus can cause it to form into a tube (a non-infectious

form) rather than an infectious icosahedron – which seems

plausible – then it might be possible to interfere with virus

replication.

Other applications include cross-linking structures, such as exist

in bacteriophage HK97, in which additional chemical bonds occur

between adjacent capsomers; physical properties of capsids, which

could suggest new ways to destroy the virus; and the way the

genome is packaged within the virus. Research into this intriguing

area continues. But what is known to date fully justifies the view

that abstract geometry in higher dimensions can tell us a lot of

useful things about real viruses in three dimensions.
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11 Hidden Wiring
.................................

Compared with most other animals, we have unusually large brains.

We’re very proud of our brains, because they are the source of

human intelligence, which by any reasonable definition is greater

than that of almost all other creatures (though I do wonder about

dolphins). However, intelligence can’t be just a matter of brain size,

absolute or relative. Some animals have bigger and heavier brains

than we do, and some animals have brains whose weight, in

proportion to that of their bodies, is greater than ours. So brain size

or weight alone seems not to imply intelligence, and neither does

the relative brain size or weight (see Figure 33).

In fact, our big brains may not be as unusual as has previously
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been assumed. Suzana Herculano-Houzel and colleagues at the

Laboratory of Comparative Neuroanatomy in Rio de Janeiro have

analysed brain size in numerous species, finding that our brains are

about the size you would expect in a large primate.1 As far as brain

size goes, we are no more than scaled-up monkeys.

However, monkeys are smart. A lot smarter than many creatures

with brains the same size. In many types of animal, larger brains

also have larger nerve cells, but in primates, nerve cells remain the

same size no matter how big the brain. So a monkey brain has a lot

more nerve cells than, say, a rodent brain of similar physical size.

What matters is not how big a brain you have, but what it can

do and how you use it.

In ancient times, the function of the brain was a mystery. When

the Egyptians mummified their pharaohs, they carefully removed

the liver, lungs, kidneys and intestines, putting them in so-called

canopic jars, so that the king would be able to use these vital

organs in the afterlife. But they scraped out the brain by opening a

hole into the skull through the back of the nose, stirred the brain

until it turned to mush, drained it out and threw it away. They

clearly thought that the king would not need his brain in the

afterlife, and their reason was that it didn’t seem to do anything.

On the other hand, like all cultures of the period, they knew

that if someone’s head was caved in with a club, in battle, then

they would die. One of the favourite depictions on temple walls

was a ‘smiting scene’ in which the king clubbed his enemies with a

mace. So they presumably realised that you needed an intact head

to survive, but discounted the brain because it didn’t appear to

have any useful function. It was just padding for the head.

The human brain is a very complicated organ, made from nerve

cells: special types of cell that link together into chains and

networks and send signals to one another. A typical human brain

contains about 100 billion (1011) nerve cells, which form up to a

quadrillion (1015) connections. If some recent suggestions are

correct, another type of cell, called a glial cell, also takes part in the

brain’s processing activity, and there are at least as many of those as

nerve cells – some say ten times as many.

Nerve cells, also known as neurones or neurons, do not occur

just in brains. They pervade bodies as well, forming a dense

network that transmits signals from the brain to muscles and other

organs, and receives signals from the senses – sight, hearing, touch,
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and so on. Nerve cells are the hidden wiring that makes bodies

work. Even lowly creatures such as insects have complicated

networks of neurons. The nematode Caenorhabditis elegans is a tiny

worm, much studied because it always has the same number of cells

in the same layout: 959 in the adult hermaphrodite, 1,031 in the

adult male. One-third of them are nerve cells.

............
Even a single nerve cell is complex. But what makes nerve cells so

powerful as signalling and data-processing devices is their ability to

network. The main body of a nerve cell has many tiny

protuberances, known as dendrites, which receive incoming signals

(see Figure 34). The nerve cell also transmits outgoing signals,

which travel along its axon, the biological equivalent of a wire. The

axon can branch at its far end, so the same signal can be fed to

many different recipients. The signals are electrical, as in modern

communications, and they use very small voltages; they are

generated, distributed and acted upon through chemical reactions.

The simplest signal is a short, sharp pulse of electrical activity, but
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nerve cells can also produce signals that oscillate, or occur in short

bursts, or behave in more complicated ways.

By connecting axons to dendrites, nerve cells can form

structured networks. The mathematics of such networks, which

we’ll get to in due course, shows that the resulting dynamics can be

far more complicated than anything the component nerve cells can

do on their own, just as a computer can do things that a transistor

cannot. However, even a single nerve cell is a complicated thing to

describe and model mathematically.

Scattered through the body are many different specialised

networks of neurons, which cause muscles to contract or detect and

process sensory data. Networks with just a few neurons can perform

sophisticated tasks. Large networks of a few hundred are already too

complex to understand in detail, and they can do many things that

small networks can’t. A network of 100 billion neurons – a brain –

poses a serious challenge for biologists and mathematicians alike. In

fact, there is no real prospect of gaining a complete understanding:

the brain is too complex. Nonetheless, a lot of progress is being

made, because to some extent the brain has a modular structure,

and we can study individual modules, which are simpler.

............
The simplest such module is a single nerve cell. If you can’t

understand how a single nerve cell works, you won’t get far with an

entire brain. One of the first significant applications of mathematics

to biology occurred in neuroscience, the study of the nervous

system, in 1952. The problem was the transmission of individual

pulses of electricity along a nerve axon – the basis of the signals

that are sent from one neuron to another. The Cambridge

biophysicists Alan Hodgkin and Andrew Huxley developed a

mathematical model for this process, now called the Hodgkin–

Huxley equations.2 Their model describes how an axon responds to

an incoming signal received by the nerve cell. They were awarded a

Nobel prize for this work.

Hodgkin and Huxley started from a physicist’s model of the

nerve axon, treating it as a poorly insulated cable transmitting

electricity. The insulation is poor because some of the atoms that

take part in the associated chemical reactions can leak out. More

precisely, what leaks is ions: charged atomic nuclei. The main
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vehicles of voltage leakage are sodium ions and potassium ions, but

others, especially calcium, also play a role. So Hodgkin and Huxley

wrote down the standard mathematical equation for electricity

passing along a cable, and modified it to take account of three types

of leakage: loss of sodium ions, potassium ions, and all other ions

(mainly calcium). The Hodgkin–Huxley equations state that the

electrical current in the cable is proportional to the rate of change

of the voltage (this is Ohm’s law, a simple and basic piece of the

physics of electricity), together with additional terms that account

for the three types of leakage.3

The actual equations are messy, because of the complicated

form of the leakage terms, and can’t be solved by a formula, so

Hodgkin and Huxley did what all scientists and mathematicians do

in such circumstances: they solved the equations numerically. That

is, they calculated very good approximations to the solutions. There

were already excellent, long-established methods for doing that,

and yet another branch of mathematics, numerical analysis, entered

the story. They did not have a computer; hardly anyone did in

those days, and those that existed were the size of a small house. So

they carried out the calculations by hand using a mechanical

calculator. The result was that a voltage spike should travel along

the axon (see Figure 35). With specific values for various data,

derived from experiments, they calculated how fast the spike

travelled. Their figure of 18.8 metres per second compared well with
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the observed value of 21.2 metres per second, and the calculated

profile of the spike was in good agreement with experiment.

The spike has some important features, which gave some insight

into how a nerve cell works. The incoming signal has to be greater

than a particular threshold value before the nerve cell fires and

triggers a spike. This prevents spurious outgoing signals being

triggered by low-level random noise. If the incoming signal is below

the threshold, the voltage in the axon bumps up slightly but then

dies away again. If it is above the threshold, the dynamics of the

nerve cell causes the voltage to increase sharply, and it then dies

down even more sharply; these two changes create the spike. There

is then a short ‘refractory period’ during which time the nerve cell

does not respond to any incoming signal. This keeps the spikes

separate (and spiky). After that, the cell is back at rest and ready to

respond to the next signal it receives.

............
Today there are many mathematical models of a single nerve cell or

axon. Some sacrifice realism for simplicity, and are even simpler

than the Hodgkin–Huxley equations; others aim at greater realism,

which automatically makes them more complicated. As always,

there is a trade-off: the more features of the real world you put into

the model, the harder it becomes to work out what it can do. The

goal, not always attainable, is to retain the features that matter and

discard everything that’s irrelevant.

One of the simplest models yielded a valuable insight: the nerve

axon is an excitable medium. It responds to a small input by

amplifying it; then it temporarily switches off the amplification

process, so that the resulting signal cuts off at some finite value

instead of rising indefinitely. The model concerned derives from

Richard Fitzhugh’s work at the National Institutes of Health at

Bethesda in Maryland in the early 1960s, and is known as the

FitzHugh–Nagumo equations.4 FitzHugh made conscious

mathematical simplifications to the Hodgkin–Huxley equations,

combining the roles of the ionic pathways into a single variable.

The other key variable is the voltage. So the FitzHugh–Nagumo

equations are a two-variable system, and we can represent those

variables as the two coordinates of a plane. In short, we can draw

pictures.
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Figure 36 shows the most important feature of the FitzHugh–

Nagumo equations: excitability. The left-hand picture shows a

wiggly curve in the plane of the two state variables: this is the curve

on which the voltage would not change as time passes if the ionic

currents were fixed. The arrows show the direction in which the

voltage changes as time passes. The middle picture shows the effect

of a small disturbance, or ‘kick’, produced by an incoming signal.

The state is disturbed from rest, but fails to cross the dotted curve,

so it makes a small excursion and returns rapidly to its resting state.

The right-hand picture shows the effect of a larger kick. Again the

state is disturbed from rest, but now it crosses the dotted curve, so

it makes a large excursion and eventually returns, slowly, to its

resting state. This property is called excitability, and it is one of the

central mathematical features of both the Hodgkin–Huxley and

FitzHugh–Nagumo models. Excitability is what allows the neuron to

generate a large voltage spike when given a small but not too small

kick, and then return to rest reliably, even if a further signal comes

in which might interfere with that process.

This sequence of events shows how a neuron obeying the

FitzHugh–Nagumo equations can generate a single, isolated voltage

spike. Real nerve cells do this, but they also generate long trains of

pulses – they oscillate. Similar pictures reveal that the FitzHugh–

Nagumo model can also produce oscillations.

This is just the simplest model for nerve cell dynamics. There

are many others, and which is appropriate depends on the question

being answered. The more powerful your computer, the more

‘realistic’ the equations can be made. But if the model gets too

complicated, it often yields little insight beyond ‘it does so-and-so

because the computer says so’. For some questions, a simpler but
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less realistic model may be better. This is the art of mathematical

modelling, and it is more of an art than a science.

Excitability is one of the reasons why nerve cells can send one

another signals. In fact, it is why signals can be produced to begin

with. But the really interesting behaviour arises when several cells

send signals to one another. Nerve cells in real animals form

complex networks. Mathematical biologists are just beginning to

grasp the amazing power of networks. A network of relatively

simple components, communicating via little more than series of

spikes, can do extraordinary things. In fact, they can probably do

everything our brains can do, as far as manipulating sensory inputs

and generating outputs to the body are concerned. This seems likely

because the brain is a very, very complex network of nerve cells.

And there are good reasons to think that most of the brain’s

astonishing abilities are consequences of the network architecture.

............
One of the biological topics that I’ve worked on myself provides a

nice example of networks of nerve cells. The topic is animal

locomotion: how animals move using their legs, what patterns they

use, and how those patterns are produced. This is a huge subject in

its own right, with a fascinating history, but I can only scratch the

surface here.

In July 1985, along with two other mathematicians and a

physicist, I was travelling through redwood and sequoia forests

down the coast of California in a Mini. We were on the way home

from a mathematics conference in Arcata, a small town about 200

miles north of San Francisco. To pass the time when we weren’t

hopping out of the car to look at giant trees, Marty Golubitsky (one

of the mathematicians) and I started thinking about the patterns

that form when you hook a lot of identical units together into a

ring.

We’d already sorted out a general method for approaching this

sort of question. It predicted that rings of this kind should generate

travelling waves, in which successive units round the ring do

exactly the same thing, but with a time delay. The simplest

example is to hold your arms out sideways and let them dangle

from the elbows. Now let the dangling bits swing to and fro.

Typically, they either synchronise, with both arms moving in the
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same way, or they anti-synchronise, with the left arm doing the

exact opposite of the right.

Similar patterns arise when there are more than two

components. For instance, if you hook four components together in

a square, with each one connected to the next, then you can get

patterns in which all four components oscillate periodically, but

there is a time difference of one-quarter of the period between each

component and the next. It’s like four people all singing the same

four-beat bar of music over and over again, but one starts with the

first note, the next starts with the second note, the next with the

third note and the last one with the fourth note.

Later, we realised that similar patterns occur in animal

locomotion. Animals move in a variety of patterns, called gaits,

repeating the same sequence of movements over and over again in

a series of ‘gait cycles’. A horse, for example, can walk, trot, canter

or gallop – four distinct gaits, each with its own characteristic

pattern. In the walk, the legs move in turn, and each hits the

ground at successive quarters of the gait cycle. So the sequence goes

left back, left front, right back, right front, all equally spaced, over

and over again. The trot is similar, but one diagonal pair of legs hits

the ground first, and the other pair does so half a gait cycle later. So

in both gaits all four legs do essentially the same thing, but with

specific differences in the timing.

There are ten or twelve common patterns in animal gaits, and

dozens of uncommon ones. Some animals, such as the horse, use

several different gaits. Others use only one, other than standing

still. Four of the most common gaits are illustrated in Figure 37.

Jim Collins, a biomechanicist (someone who applies mechanics

to biology, especially medicine) at Boston University’s medical

institute heard of our ideas, and he told us that gaits are thought to
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the gait cycle at which each leg hits the ground.
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be produced by a relatively simple circuit in the animal’s nervous

system, known as a central pattern generator (CPG). This is located

not in the brain, but in the spine, and it sets the basic rhythms, the

patterns, for the movement of the muscles that actually causes the

animal to walk, trot, canter or gallop.

No one had actually seen a CPG at this time. Their existence

was inferred indirectly, and in some quarters they were a bit

controversial, but the evidence was quite strong. However, the exact

network of connections among the nerve cells was unknown. So we

did the best we could and worked out the most plausible patterns,

assuming various more or less natural structures for the CPG. We

started with quadrupeds, and went on to apply similar ideas to six-

legged creatures: insects.

There had already been a lot of work done on the mechanics of

legged locomotion. Our approach was more abstract, trying to infer

the structure of a hypothetical CPG from the patterns observed in

the legs. But it had an interesting consequence: it revealed that the

same network of nerve cells, operating under different conditions, is

capable of generating all the most symmetric quadruped gaits –

and, in more subtle circumstances, less symmetric ones like the

canter and the gallop as well.

None of the networks that we proposed was completely

satisfactory, for various technical reasons. Discussions with

Golubitsky and the Ontario-based mathematician Luciano Buono

led to the insight that any workable CPG for quadrupeds must have

at least two units per leg: one to work the muscles that flex the leg

and the other to work the muscles that extend it. So the most

natural CPG for quadrupeds should have eight units (Figure 38, see

over).5

This network can generate all the basic four-legged gaits. Along

with the standard gait patterns, it predicted one that we’d not

encountered before. In this gait, which we named the jump, the

two rear legs hit the ground together, and then the two front legs

hit the ground together a quarter of the way through the gait cycle.

If it had been halfway through the cycle, this gait would have been

a standard one, the bound. Dogs bound when running fast, for

example. But one-quarter of the way through the gait cycle was a

real puzzle, especially since no legs hit the ground halfway through

or three-quarters of the way through. It was as though the animal

were somehow suspended in mid-air.
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We came to this conclusion late one afternoon. The Houston

Livestock Show and Rodeo was in town, and we had seats booked

for that evening. So we went to the Astrodome, and watched cattle

being roped and buggies being raced. Then came the bucking

broncos. The horses were trying to throw the riders off their backs,

and the riders were trying to stay on for as long as they could –

which was often just a few seconds. Suddenly Golubitsky and I

looked at each other and started counting . . . The horse that we

were watching was jumping into the air, both back feet giving it a

push, then both front, then hanging in the air . . .

It looked very much as though the difference in timing was one-

quarter of the full gait cycle. The Exxon Replay, a television

recording in slow motion, of that precise horse confirmed this. We

had found our missing gait.

Later we discovered that two other animals, the rat and the Asia

Minor gerbil, also employ this unusual gait. We found several other

features of real gaits that were predicted by our eight-unit CPG or

natural generalisations, including one displayed by centipedes. Of

course none of this proved that our theory was correct, but it did

mean that it passed several tests that might prove it wrong.

More recently, Golubitsky and the Portuguese mathematician

Carla Pinto have applied the same idea to a four-unit network for
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Fig 38 Predicted architecture of quadruped CPG. Two rings of four identical

modules are linked left–right. Two modules connect to each leg,

determining the timing of two muscle groups. The picture is schematic

and there may be many more connections in the CPG, but having the

same symmetry.
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biped gaits – two legs, like us.6 They find ten gait patterns, eight of

which correspond to known gaits in bipeds. They include the walk,

run, hop and skip.

............
Another fascinating network of neurons is definitely found in a real

animal, rather than being a mathematician’s pipe-dream. It is the

CPG for the heartbeat of the medicinal leech Hirudo medicinalis.

Leeches are slug-like creatures that suck blood. They were widely

used in ancient medicine to ‘balance the body’s humours’ when

there was deemed to be an excess of blood; the earliest record of

their use goes back to 200 BC. The use of leeches died out during

the nineteenth century, but by the beginning of the twenty-first

they were back in vogue, though for more scientific reasons and in

a more limited realm. The saliva of leeches contains a molecule

called hirudin, which keeps blood flowing freely while the animal

sucks it from its victim. Hirudin helps to stop the patient’s blood

coagulating during microsurgery.

The medicinal leech poses a curious problem for

mathematicians interested in networks of neurons: its heartbeat

follows a very strange pattern. The heart of a leech consists of two

rows of chambers, with about 10 to 15 in each row, depending on

the species. The pattern goes like this. For a while, all the chambers

on the left beat in synchrony – at the same moment. While this is

happening, the chambers on the right beat in sequence, one after

the other, from back to front. After between 20 and 40 beats, the

two sides swap roles. Then they swap again, and so on.

Nobody really knows why the leech heart beats in this manner,

but the blood pressure is high when the chambers beat in sequence,

and much lower when they beat synchronously, so the need to

avoid persistent high pressure (or indeed persistent low pressure)

may be part of the reason. We have a much more complete

explanation of how it does it. The strange switching between two

patterns is driven by the creature’s nervous system, and is a natural

feature of network dynamics (Figure 39, see over).

Ronald Calabrese and colleagues at Emory University in Atlanta,

Georgia have investigated the heartbeat of the leech in an extensive

series of papers.7 They traced the dynamics to a CPG: a network of

nerve cells located in most of the leech’s 21 segments. In each
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segment there is a pair of motor neurons, one on the left and the

other on the right, which make the heart muscles contract (see

Figure 40). There is also a pair of ‘interneurons’, which help to

generate the pattern of nerve impulses needed to control the

heartbeat. The interneurons in the third and fourth segments are

wired up to produce a regularly pulsing timing pattern; in effect

they form a clock whose regular ticking influences what the other

neurons do. The wiring in the fifth, sixth and seventh segments

directs these signals to the heart motor neurons on left and right

sides of the leech, and modifies the signals so that on one side the
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Fig 40 CPG for the leech heartbeat.

Fig 39 Recordings from various vascular nerves of a leech reveal short bursts of

electrical activity. Here the 4th, 6th and 8th nerve cells on the right side of

the leech (the top three rows of signals) are bursting in sequence before

the time marked with an arrow, but in synchrony after that. The

corresponding nerve cells on the left side of the leech (the bottom three

rows) initially burst in synchrony, but switch to bursting in sequence.
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effect is a sequential wave of contractions, but on the other all

muscles contract simultaneously. The dynamics of these three

segments switches regularly from this pattern to its mirror image.

Calabrese’s group originally focused mainly on these timing

circuits, and did not investigate in any detail how the timing

signals are transmitted to segments further along the leech. In 2004

Buono and Antonio Palacios, of the Nonlinear Dynamical Systems

Group at San Diego State University, employed techniques from

dynamical systems with symmetry to model this transmission

process.8 They modelled the network that transmits the signals as a

chain of neurons whose ends are linked to form a closed loop.

Symmetric dynamics tells us that there are two common patterns of

periodic oscillation in closed loops: sequential and synchronous.

The relations between the two patterns arise through a so-called

mode interaction, when the parameters of the network connections

cause both patterns to arise simultaneously.

In earlier work by Buono and Golubitsky, mode interactions of

this type were invoked to explain the less-symmetric gaits of

quadrupeds, such as the canter and gallop of a horse. So the

cantering horse and the heartbeat of the leech fall into the same

category of phenomena, both mathematically and biologically.

More recently, Calabrese’s group has devised more detailed

models, with an emphasis on the structure of the signals between

nerve cells, which occur in short bursts (as shown in Figure 39). The

role of bursting seems to be central to this and many similar

problems in neuroscience, so mathematicians have developed

equations for bursting neurons.

............
Networks of neurons are involved in perception as well as motion.

In 1913 the New York neurologists Alwyn Knauer and William

Maloney published a report in the Journal of Nervous and Mental

Disease on the effects of the drug mescaline, a psychedelic alkaloid

found in cacti, notably peyote, which grows in desert areas of

Central America. Their subjects reported striking visual

hallucinations:

Immediately before my open eyes are a vast number of rings,

apparently made of extremely fine steel wire, all constantly

rotating in the direction of the hands of a clock; these circles
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are concentrically arranged, the innermost being infinitely

small, almost point-like, the outermost being about a meter and

a half in diameter. The spaces between the wires seem brighter

than the wires themselves . . . The center seems to recede into

the depth of the room, leaving the periphery stationary, till the

whole assumes the form of a deep tunnel of wire rings . . . The

wires are now flattening into bands or ribbons, with a

suggestion of transverse striation, and colored a gorgeous

ultramarine blue, which passes in places into an intense sea

green. These bands move rhythmically, in a wavy upward

direction, suggesting a slow endless procession of small mosaics,

ascending the wall in single files . . . Now in a moment, high

above me, is a dome of the most beautiful mosaics . . . Circles

are now developing upon it; the circles are becoming sharp and

elongated . . . now all sorts of curious angles are forming, and

mathematical figures are chasing each other wildly across the

roof.

Similar effects can be seen by closing your eyes and pressing on

the eyeballs with your thumbs, so a first guess might be that the

drug affects the eyes. Actually, it affects the brain, creating signals

that the brain’s visual system interprets as images seen by the eye

(see Figure 41). These patterns offer important insights into the

structure of the visual system, thanks to a mixture of experiments

and mathematical analysis.

A large part of the brain is devoted to the visual system.

Biologists have been studying the neuroscience of vision for many

years, and have learned a lot about it. But there’s a lot that we still

don’t understand. At first sight, you may wonder what the problem

is. Isn’t the eye basically a camera – a pinhole camera with the

pupil as a pinhole, a lens to improve the focus and a retina to

receive the image? The main problem is that the brain doesn’t just
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passively ‘take a photograph’ of what is out there. It provides

automatic understanding of what the eye is seeing. The brain’s

visual system processes the image, working out what objects are

being viewed, where they are relative to one another, even

decorating them with the vivid colours that we perceive. We look

out of the window and instantly ‘see’ a man walking past with his

dog. But the dog is passing behind a lamppost, and half the man is

hidden from view by a hedge; the man’s body is mostly covered by

a coat and his face is obscured by the hood. Moreover, the image

appears to be three-dimensional: we know, without thinking, which

parts are in front of which.

It has proved almost impossible to teach a computer to analyse

such a scene and recognise the main objects in it, let alone work

out what they are doing. Yet the visual system achieves this, and

more, in real time, with a moving image. With the help of some

clever biochemistry and difficult experiments, mathematical

biologists are starting to make inroads into the structure and

function of the visual system. And what we currently understand

shows that evolution has been very clever indeed.

Images received by the retina of each eye pass along the

corresponding optic nerve (actually a huge bundle of nerve fibres)

to an area of the brain known as the visual cortex. This lies on the

surface of the brain, just under the skull, and if you were to lift off

the top of the skull you would see that it has the familiar

convoluted shape, a bit like a cauliflower. If you flatten out the

convolutions, the visual cortex turns out to be made from a number

of layers of nerve cells, placed on top of one another. The top layer,

known as V1, starts by representing the image as an array of on/off

signals in the corresponding nerve cells. In experiments, it proved

possible to work out what a cat was looking at by using voltage-

sensitive dyes to make the on/off pattern visible. If the cat was

looking at a square, say, then a distorted square appeared on the V1

layer.

Each layer of the cortex is connected to those above and below,

and this wiring is done in such a way that successive layers extract

different information from the basic image formed on the top layer.

The next layer down, for example, sorts out the boundaries between

different features of the image – where, say, the dog’s body appears

to be cut by the edges of the lamppost, and where the man’s hood

ends and the house behind it begins. It also works out the
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orientations of these boundaries. Then the next layer can compare

directions and locate such things as the dog’s eyes, which are point-

like, so the edges change direction very rapidly. Presumably, many

layers down, is a nerve cell or a network of them that makes the

deduction ‘dog’; after that comes the recognition that the dog is a

Labrador retriever, until at some level you realise that it’s Mr Brown

taking Bonzo for his evening walk.

There are useful mathematical models of the first few stages of

this process, which have a very geometric feel to them. These models

show how information flows back up through the layers as well as

down into the depths, priming the visual system actively to look for

specific features. This is how our eyes track the dog as parts of it

vanish behind the lamppost and reappear. It ‘knows’ that they are

going to do that, and anticipates it. It is possible to devise

experiments that make use of the visual system’s ability to anticipate

what it expects to see, by tricking it into seeing something else. It is

also possible to alter the brain’s perceptions using drugs. Recent

discoveries about the V1 layer of the visual cortex depend, to some

extent, on the patterns that arise when volunteers take hallucinatory

drugs such as LSD.

Legal experimental volunteers and illicit users of these drugs

report seeing a variety of strange, geometric patterns. It can be

shown that the patterns do not originate in the eye, even though

they are ‘seen’ to be part of the image that the eye is receiving.

Instead, they are artefacts caused by changes in the way the nerve

cells in the cortex function. Anything that the brain’s networks

perceive is automatically interpreted as though it had come from an

external image. We can’t stop that happening; it is how we see

everything. What we fondly imagine to be the external world is

actually a representation held in our own heads. This is the main

reason why the visual system can be tricked into seeing things that

aren’t there. On the whole, though, we can trust our visual system,

which evolved to perceive things that are there. Except when it is

presented with carefully contrived images that create illusions, or

drugs that cause hallucinations.

Around 1970, Jack Cowan, a biomathematician now at Chicago,

started to use hallucination patterns to unravel the structure of V1.

His first discovery provided strong evidence that hallucination

patterns arise in the brain, not the eye. The range of reported

hallucination patterns is huge, but most of them are variations on a
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basic theme: spirals. Some are concentric circles, and a circle is what

happens to a spiral when it is wound so tightly that the spacing

between successive turns becomes zero. Others are radial spokes,

another special case when the turns of the spiral grow so rapidly

that the spacing effectively becomes infinite. Sometimes the spiral

pattern is decorated with hexagons, like a honeycomb; sometimes it

is covered in a chequered pattern of lozenges, like Elizabethan

window panes. Sometimes it is too bizarre to describe meaningfully.

But spirals dominate, and they are of the type that mathematicians

call logarithmic. Spirals and spokes often rotate, and concentric

circles can spread like the ripples on a pond when you drop a stone

into it.

To form a logarithmic spiral, imagine a spoke that rotates at

constant speed, and a point that moves outwards along the spoke.

The combination of these two motions creates a spiral, but the

exact shape of the spiral depends on how the point moves along

the spoke. For example, if it travels at a fixed speed, we get an

Archimedean spiral, in which successive turns are equally spaced. If

the speed grows exponentially, so that (say) each turn is twice as far

out as the previous one, we get a logarithmic spiral (see Figure 42).

In 1972, Cowan and his collaborator Hugh Wilson wrote down

mathematical equations, now called the Wilson–Cowan equations,

which describe how a large number of interconnected neurons

interact with one another.9 In 1979 Cowan and Bard Ermentrout

used these equations to model how waves in the visual cortex

propagate, and deduced that the complex spiral patterns reported

by experimental subjects can be explained in terms of much simpler

patterns of electrical and chemical activity in the top layer of the

cortex. The predominantly spiral nature of the hallucinations is a
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useful clue, because physiologists have figured out how the image

sent to the cortex by the retina compares to the one that the cortex

actually receives. The retina is circular, but the V1 layer, when

unfolded, is roughly rectangular. The image on the cortex is a

distorted version of the image on the retina. The way it is distorted

can be described by a mathematical formula which has the effect of

converting radial lines on the retina into parallel lines on the

cortex, and concentric circles on the retina into another set of

parallel lines, at right angles to the first. However, just to keep us

on our toes, this happens in two different regions of the cortex. In

reality they are joined like an hourglass, as in Figure 44, but

mathematically it is often convenient to swap the two ends to make

an oval shape, as in Figure 43.

The most significant feature of this ‘retino-cortical map’ is that

it turns logarithmic spirals on the retina into parallel lines in the

cortex. The visual system automatically makes us ‘see’ anything

detected by the cortex, whether or not it originates in the eye, so

we will ‘see’ spirals if something creates a pattern of parallel stripes

on the cortex. Psychotropic drugs cause waves of electrical activity,

and the simplest wave pattern is stripes.

If the stripes move, forming travelling waves like ocean waves

coming up a beach, then the geometry of the retino-cortical map

implies that the spirals will appear to rotate. Radial spokes are a

special case of spirals, and correspond to horizontal stripes on the

cortex (relative to the conventional orientation of the cortex). As

the waves travel across the cortex, the spokes rotate. Concentric

circles similarly correspond to vertical stripes; this time, as the

waves travel across the cortex, the circles appear to expand from

their centre (see Figure 44).
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This already offers a big clue about the hallucination patterns:

they make much more sense if they are caused by simple striped

waves, moving across the cortex. And those waves are patterns of

electrical and chemical activity, caused by the drug. The other more

elaborate patterns sometimes reported have a similar explanation,

involving different behaviour on the cortex. The spiral

honeycombs, for instance, correspond to straightforward

honeycomb patterns on the cortex.

The equations that Cowan and Ermentrout devised constitute

what mathematicians call a continuum model. That is, it models

the very fine but discrete network of real neurons by a continuous

distribution of infinitesimal neurons. The cortex becomes a plane,

and the neurons reduce to points. This kind of transition from

discrete reality to a continuous model has become a standard

strategy when applying mathematics to the real world, because it

permits the application of differential equations, a very powerful

tool. Historically, the first areas of science to be treated this way
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were the movement of fluids, the transfer of heat and the bending

of elastic materials. In all three cases, the real system is composed

of discrete atoms, which though very small are indivisible, whereas

the mathematical model is infinitely divisible. Experience shows

that continuum models are very effective provided the discrete

components are much bigger than the effects being described.

Although neurons are much larger than atoms, they are

considerably smaller than the wavelengths of electrical waves in the

cortex, so it is reasonable to hope that a continuum model might

be worth pursuing.

A further simplification replaces the oval shape of the flattened-

out cortex by an infinite plane. The modelling assumption here is

that the edges of the cortex do not have a significant effect on

waves in its interior. With all these simplifying assumptions in

place, standard methods used to study pattern formation can be

applied to classify the wave patterns in the cortex, and hence the

hallucination patterns.

Initial attempts to analyse travelling waves in the cortex using

these methods scored some successes, but didn’t always get the

details right. When new experimental methods revealed the ‘wiring

diagram’ for neurons in the cortex, it became clear why this was

happening, and suggested a slightly different model.

Cells in V1 do not just map out the image, like a collection of

pixels on a TV screen. They also sense the directions of edges in the

image. So the state of a cell is not just the brightness of the

corresponding point in the image (I’m ignoring colour here and

thinking about just one eye) but also the local orientation of any

lines in the image. Mathematically, each point in the plane has to

be replaced by a circle of orientations. The resulting shape does not

correspond naturally to a shape in our familiar three-dimensional

space, but we don’t need to visualise it in order to do the sums.

Experiments show that the neurons in V1 are arranged in small

patches, and within each patch the neurons are especially sensitive

to a particular orientation. Neighbouring patches respond to nearby

orientations, so that (say) one patch might respond to vertical

edges, and a neighbouring patch might respond to edges tilted 308
to the right of vertical. Most of the connections among these

neurons fall into two types. Within any given patch, we find short-

range inhibitory connections, meaning that incoming signals

suppress activity in the nerve cell instead of stimulating it. But
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there are also long-range excitatory connections between distinct

patches, and they do stimulate activity. Moreover, the excitatory

connections are aligned along a specific direction in the cortex: the

same direction that the patch itself prefers.

This pattern of connections changes the corresponding

continuum model, which is not a plane’s worth of points, but a

plane’s worth of circles. Translations and reflections behave in the

usual way. However, any rotation of the plane must also rotate

every circle, otherwise the wiring diagram doesn’t work out

properly. Once the experiments have shown how to puzzle out the

correct model, the heavy machinery of the mathematics of pattern

formation can be brought to bear.10 This time, the classification of

the wave patterns in the cortex, and the corresponding

hallucinations, performs better.

The new mathematical model provides a convincing catalogue

of hallucination patterns, and it also suggests the reason for the

wiring diagram that nature has evolved for the V1 layer of the

cortex. Imagine one of the patches, and suppose that it ‘sees’ a

short segment of horizontal line. Its local inhibitory connections

effectively vote for the most plausible direction for this line: the

direction that receives the strongest signal wins, and all other

orientations are suppressed. But now that patch sends excitatory

signals to patches that are sensitive to that same orientation, in

effect biasing them in favour of the same orientation. And it sends

this signal only to patches that lie along the continuation of the

direction that it has selected. The net result is that the direction of

the line, as seen by this patch, is tentatively extended across the

cortex. If this extension is correct, the next patch across will

reinforce that choice of direction. However, if the next patch

detects a strong signal in a different direction, then this will

override the bias signal that is attempting to extend the edge.

In short, the nerve cells are wired so that they fit local bits of

edge together into longer lines in the most plausible fashion. Any

small gaps in these lines will be ‘filled in’ by the excitatory signals;

however, if the line changes direction, the local inhibitory signals

will confirm that this has happened and settle on a new choice. So

the end result is that V1 creates a series of contours – linear outlines

of the main features in the image. In 2000, John Zweck, a

mathematician at the University of Maryland, and Lance Williams,

a computer scientist at the University of New Mexico, used exactly
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the same mathematical trick to devise an effective algorithm for

their work on computer vision.11 The application was contour

completion – filling in missing bits of edges in an image, for

example where part of one object is hidden behind another.

Like the dog partly hidden by the lamppost.

............
Neuroscience is one of the most active areas of mathematical

biology. Researchers are working on a huge variety of topics: how

neurons work, how they link up during development, how the

brain learns, how memory works, how incoming information from

the senses is interpreted. Even the more elusive aspects of the

human brain, such as its relation to mind, consciousness and free

will, are also under investigation. The techniques employed include

dynamics, networks and statistics.

In parallel with these theoretical developments, biologists have

made major advances in experimental techniques to study what the

brain is doing. There are now several ways to image the activity of

the brain in real time – in effect, to watch which parts of the brain

are active, and how the activity passes from one region to another.

But the brain is immensely complex, and at the moment it is

probably better to focus on specific features of the nervous system,

rather than trying to understand the whole thing in one go. Our

brains are so complicated that, ironically, they may be inadequate

to understand . . . our brains.
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12 Knots and Folds
.................................

The discovery of the genetic code, which represents amino acids in

proteins as triples of DNA bases, was the first of many

breakthroughs where DNA was thought of as a code, a list of

symbols. But the physical form of the DNA molecule is also

important, and so are the forms of the molecules that it encodes.

The same goes for proteins. To make an organism, you need

more than a list of proteins: you need to get the right proteins into

the right places at the right time. Just as you can’t make a cake by

dumping all the ingredients into a bowl and sticking it in the oven,

you can’t make an organism by making 100,000 proteins and

hoping that they will somehow sort themselves out into an amoeba

or a human being.

Only a small proportion of the genome consists of genes – codes

for proteins. For a long time the rest was stigmatised as ‘junk DNA’,

evolutionary relics with no current function, going along for the

ride because it wasn’t worth evolution’s while to weed them out. It

is now clear that at least some of that junk DNA helps to control

how an organism is assembled. The rest may still be junk – but I

wouldn’t bet on it, given the past record.

How does this DNA control system work? The answer might

require no more than the cracking of some other code, the code for

instructions rather than ingredients. But again it’s not that simple.

One of the systems that control an organism’s development uses

genes (more properly, the proteins they encode) to switch other

genes on and off. What matters here is the dynamics of the genetic

switching network. And dynamics is a matter for mathematics, it

can’t just be read off from DNA codes. You might, perhaps, be able
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to read off which genes act on which other ones – but that

information won’t tell you what they all do when everything is

happening at once. In the same way, knowing how temperature

and humidity in the Earth’s atmosphere affect each other doesn’t

tell you next week’s weather.

The shapes of the molecules turn out to be at least as important

as the sequences that determine them. The double-helix shape of

DNA governs many of its most basic properties. In particular, the

copying system for DNA, which cells and indeed the entire

organism use to reproduce, must overcome a massive topological

obstacle: the two DNA strands are twisted round each other like the

strands of a rope. If you try to pull a rope apart by tugging on its

strands, all you get is a hopeless tangle.

The shape of a protein is more important still. Many proteins do

their jobs by binding to other proteins – sticking to them, usually

temporarily, but in a controllable way. When the protein

haemoglobin picks up or releases a molecule of oxygen, it changes

shape. A protein is a long chain of amino acids, and it gets its shape

by folding up into a compact tangle. In principle, the shape of this

tangle is determined by the sequence of amino acids; in practice,

it’s virtually impossible to calculate the shape from the sequence.

The same sequence can fold up in a gigantic number of ways, and it

is generally thought that the actual shape it chooses is the one with

the least energy. Finding this minimal energy shape, among the

truly gigantic list of possibilities, is a bit like trying to rearrange

some list of thousands of letters of the alphabet in the hope of

getting a paragraph from Shakespeare. Running through all the

possibilities in turn is totally impractical: the lifetime of the

universe is too short.

............
One of the keys to the mysteries of DNA shape is a branch of

mathematics known as topology. As a well-developed area, topology

has been around for little more than a century, though with

hindsight a few precursors can be detected. By the 1950s it had shot

to stardom, becoming one of the central pillars of pure

mathematics, but its role in applications was still relatively minor.

It clarified some theoretical issues in the dynamics of the Solar

System, for instance. Topology is important in pure mathematics
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because it provides conceptual machinery to deal with any question

involving continuity. And continuity – transforming shapes and

structures without tearing them apart or breaking them into

separate pieces – is a common theme in many different areas of

mathematics. It is a common theme in applications, too: most

physical processes are continuous. But it’s not straightforward to

deduce anything useful from that property, and it took a lot longer

for topology to find a role in applied science.

Topology is not included in school mathematics lessons, except

for a few cute but inconclusive tricks. A typical example is the

Möbius band, invented independently by August Möbius and

Johann Listing in 1858. Take a long strip of paper, bend it round to

bring the ends together like a dog collar, twist one end through half

a turn, and then glue the ends together. The resulting surface has

several counter-intuitive properties: it has only one side, and only

one edge, and if you cut it along the middle it does not fall apart

into two separate pieces. There are a couple of practical applications

of Möbius bands: conveyor belts that last twice as long before they

wear out, and a method for connecting electrical wiring to a

rotating object. But none of that is terribly impressive.

There is a lot more to topology, but the concepts are too

abstract to be explained easily or accurately without a lot of

technical background. However, the pure mathematicians’ nose for

an important idea has eventually been vindicated, and topological

methods are being used in an increasingly broad range of real-world

problems, from biology to quantum field theory. The application

that I will describe here has yielded some crucial insights into the

workings of DNA. The topological gadgetry that comes into play is

less technical than in most other areas of applied maths – and is

something we all come across almost every day.

Knots.

............
Knots tend to be associated with tying parcels, boy scouts, sailing

and mountaineering. Centuries of trial and error have shaped our

understanding of knots: which one to use in which circumstances.

Tie a pig to a square post with a clove hitch and you’re in trouble;

if the pig runs round the post in the right direction, the knot

obligingly unties, and off goes your bacon.
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The topology of knots tackles two general questions. One is to

decide whether two knots are topologically the same, that is,

whether each can be changed into the other by a continuous

transformation. If you tie one of them in a length of string, can you

twist the string to get the other knot? A special case of this question

is to determine when an apparently complicated knot is really

unknotted (see Figure 45). The second topological question is much

more ambitious: whether we can classify all possible knots. There

are infinitely many knots, and even the simpler ones, with few

crossings, provide a rich variety of types.

Any knot tied in a length of string can be untied by reversing

the process; then you can retie the string into any other knot that

you wish. To get a sensible question, we have to do something to

stop the knot escaping off the end of the string. The time-honoured

solution in topology is to glue the ends of the string into a closed

loop. So a topologist’s knot is a knotted circle, rather than a

knotted curve with ends. For instance, the two knots in Figure 45

then look like Figure 46.

We can now rephrase the question in the caption to Figure 45

in knot-theoretic terms. One of the two ‘knots’ below is actually

unknotted: you can transform it, continuously, into a perfect circle,

with no crossings. The other is a genuine knot, and can’t be untied

without cutting the string. So the question is, which is the knot,

and which the unknot? In fact, the more complicated-looking knot,

on the right, is the one that unties. The other is a reef knot, and

generations of boy scouts know that it does not untie. But that’s

not a mathematical proof, and what boy scouts mean by ‘untie’

includes things like free ends and the possibility of the knot
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slipping. So topologists have to be more careful, and find solid

logical proofs for things that seem obvious.

Knot theory has on occasion been ridiculed as pseudo-

intellectual trivia. That’s an understandable attitude if you don’t

know any mathematics and base your opinion on the everyday

meaning of the word ‘knot’, but when it comes to mathematical

concepts that’s a rather silly way to think. It’s like expecting

quantum field theory to be solely about sheep. The mathematics of

knots has turned out to be deep and difficult, and it has been a

prime mover in the development of topology.

............
Knot theory is useful in biology because DNA ties itself in knots.

The knots are a relic of the twisted topology of the double helix. If

you cut a length of DNA and join its ends together, two things can

happen. Either you have joined each separate helix to itself, in

which case you end up with two closed loops of single-strand DNA.

Usually, these are linked to each other – impossible to separate

without cutting. Or, you must have joined each strand to the other

one. Now they form a single closed loop, and typically it is knotted.

If you can understand these knots and links, you can work out

features of the biological process that did the cutting. And this is an

important idea, because nature has to cut and rejoin DNA on a

routine basis. The complex topology of the double helix forces this.

Copying a DNA strand requires cutting it, disentangling it from its
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partner, building the new copy, then putting the cut strand back

where it came from and rejoining it (see Figure 17 on p. 98). These

processes are very complicated on a molecular level, but they make

life possible. And since they are on a molecular level, it’s not easy

to observe them as they happen. Instead, they have to be inferred.

The method used to derive the double-helix structure of DNA is

of little use here. It involves making a DNA crystal, illuminating it

with X-rays and observing the resulting diffraction patterns. But

cellular DNA is not a crystal. It is a free-moving molecule dissolved

in a liquid. A new approach is needed to understand what DNA

does in a cell.

The cellular machinery is not just the puzzle here: it also

provides part of the answer. DNA is cut into pieces by special

proteins, enzymes, known as topoisomerases. One way to find out

what happens is to image the resulting strands using a very

powerful electron microscope. Making these images required a new

technique: coating the DNA strands with a special protein to make

them thicker. The topology of those strands tells you useful things

about the action of the topoisomerases. This in turn tells you things

about the DNA. So you can get information about how

topoisomerases do their work, and the effect they have on the DNA,

by letting them cut up some DNA and seeing what shapes you get.

Biologists have discovered an effective way to keep this kind of

investigation under control: perform the cutting operation on a

closed loop of DNA, which can be constructed using standard

techniques of genetic engineering and equipped with special

regions whose code sequence can be recognised, and operated on,

by a suitable enzyme. The result is either a DNA knot or two DNA

loops that are linked together. The way the separate strands overlap

can be observed with an electron microscope. Now you have a

problem: you have a picture of a knot (similar to Figure 47), or a

link – but which one is it? It may well be twisted and twirled in a

way that makes the answer far from obvious. But topology can

come to your rescue.

Knots are familiar, and seem simple, which suggests that they

should be easy to understand. However, a quick glance at a book

like the famous Ashley Book of Knots reveals the existence of

thousands of different knots, and those are just the ones that

turned out to be useful in the days of sailing ships, or are

decorative, or can be used for party tricks. Distinguishing knots,
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and working out what happens to them when you make various

types of change, are basic issues in topology. And they’re hard.

For instance, although experiment made it clear thousands of

years ago that a knotted length of string is different from an

unknotted one, a solid logical proof of the existence of knots had to

wait until the 1920s. The first big success of topological knot theory

was a rigorous proof that the standard overhand knot, embedded in

such a manner in a closed loop of string, cannot be untied. That is,

no continuous transformation will convert it into an ordinary

circular loop.

Why is this problem so difficult? It requires a proof that no

transformation, however complicated and cunning, can do the job.

It is much easier to analyse some specific transformation and see

what it does, but this question can’t be answered that way. In

principle, you have to contemplate all possible transformations, and

show that none of them unties the knot. In practice this is

impossible, but there is a clever way to achieve the same result

without considering infinitely many, ever more complicated

transformations. The idea is to look for an invariant – a specific

quantity or structure associated with any knot that stays the same

when the knot is transformed. The invariant must also be

something we can calculate, otherwise it will be pretty but useless.

Here’s how an invariant does its job. Suppose, for example, that

some cunning topologist invents an invariant, and when we

calculate it, the answer is 3 for the overhand knot but 0 for the
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‘unknot’, an unknotted loop. Then we can prove, with complete

logical rigour, that no amount of twisting and turning and bending

and stretching can convert an overhand knot into an unknot. Why?

Because such transformations will always produce a knot whose

invariant is 3. Since the unknot is not one of those, it can never be

produced.

This is a straightforward and widely used idea, but there is a

sting in the tail. First, the thing we’re thinking of does actually

have to be an invariant, and it may not be easy to find such a beast

– or to prove its invariance. Second, it must be something we can

calculate for the knot we start from, and for the one we hope to

finish with; here, the unknot. Third, it must be different for the

initial knot and the final one.

Despite these obstacles, topologists managed to invent some

decent knot invariants, and they used them to solve basic problems.

Prove the overhand knot is genuinely knotted. Prove that you can’t

transform an overhand knot into its mirror image. Prove that a reef

knot is different from a granny knot, and both differ from the

overhand knot. And so on.

Many of the more recent knot invariants are algebraic formulas,

often called polynomials. There is a classic invariant of this kind,

named for its inventor, James Waddell Alexander. You can calculate

the Alexander polynomial from a picture of the knot. It is x�1�1þx

for the overhand knot, and �x�1þ3�x for the figure-of-eight knot.

Since these are visibly different, so are the knots.

The Alexander polynomial solves some problems, but not

others. It fails to distinguish reef from granny, and it can’t tell the

difference between an overhand knot and its mirror image. So

topologists sought improved invariants. Ideally, what we want is an

invariant that completely distinguishes all topologically different

knots: if the knots differ topologically, then their invariants have to

be different too. But that proved elusive. However, Vaughan Jones

invented a pretty good new invariant in 1983. The Jones

polynomial can distinguish reef from granny, and tell the difference

between an overhand knot and its mirror image. Other

mathematicians generalised his ideas, and we now have several

powerful knot invariants.
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............
Invariants are not the only way to approach questions about knots.

An earlier idea was to construct knots from simpler building-blocks,

and try to understand how the blocks worked and how they fitted

together. This technique is useful in understanding the action of

enzymes. John Horton Conway, a British mathematician famous for

his unorthodoxy, imagination and playful approach to much of

mathematics, invented one such structure, known as a tangle. By

this term, he meant a piece of a knot whose ends are attached to a

surrounding box. You can transform the bits of knot in any

continuous manner, as long as they remain inside the box, but you

have to leave their ends attached to the surface. The basic type of

tangle consists of two separate strands, each with two ends, so there

are four ends on the box, and the strands themselves are knotted

and linked together in the interior of the box. In Figure 48 the

boxes are shown as squares, but they are really three-dimensional.

There is a trivial tangle, in which the two strands are parallel

and do not link or twist. Tangles can be combined by ‘adding’ two

of them together. To do this, sit them side by side, join adjacent

ends, and replace the two surrounding boxes by a single, larger box.

This is the sense in which tangles are building-blocks, and by

repeated additions, finally joining corresponding free ends to close

the loop, you can make knots from them. The trivial tangle acts like

zero: adding it to another tangle just extends one pair of strands,

and has no topological effect.

In 1985 Nicholas Cozzarelli, a molecular and cell biologist at the

University of California at Berkeley, and colleagues, applied tangles

to a problem about DNA called site-specific recombination.1 A site,

in this context, is a short, two-stranded segment of DNA whose

base sequence can be recognised by an enzyme. Two such sites can
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be recombined: the enzyme snips out corresponding segments of

the two DNA chains that lie between them, swaps their ends round

in some manner, and rejoins everything. Except for the business of

surrounding boxes, this type of recombination has the same

geometric effect as adding a new tangle to what was previously the

trivial tangle.

Thus armed, we can attack a genuine biological problem: the

action of an enzyme with the impressive name Tn3 resolvase. This

is a site-specific recombinase. A recombinase is an enzyme that

breaks DNA strands and joins them together again in a different

way; it is site-specific if the place where it makes these changes

corresponds to a specific short DNA sequence. Tn3 resolvase can

undergo several successive reactions of this kind with double-

stranded DNA, and the problem is to find out exactly how the

strands are broken and rejoined. The topological clues, which at

first sight are rather puzzling, make it possible to reconstruct how

the enzyme acts.

Begin with a circular loop of two-stranded DNA, which

topologically is the unknot. Allow the enzyme to act on it once,

and the result is the so-called Hopf link. About once in 20 times

there is a second reaction, leading to the figure-of-eight knot. Much

rarer, but possible, is a triple reaction, which gives the so-called

Whitehead link (see Figure 49).

The single-step reaction is illustrated in Figure 50. The

unknotted loop of DNA is twisted up so that it divides naturally

into three regions, each of which constitutes a tangle. These regions

are the parallel strands inside the enzyme (shaded circle), the

double-twist to its left and the rest of the DNA. The one that most

concerns us here is the first of these, which is where the enzyme

rearranges the DNA strands, in a manner that is shown

schematically in Figure 50 as a crossing-over of the two strands. But

that’s just one guess at how the enzyme acts, and there are many

other possibilities. The problem is to replace this schematic picture
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by the one that actually occurs in nature, just by looking at the

range of knots and links produced by the chemical reaction.

Cozzarelli’s approach to this problem assumes that the enzyme

makes the same change to the tangle topology each time it acts.

This change can be viewed as tangle addition, with the same tangle

being added each time. So we start with the unknot U and

successively add a tangle X that represents the action of the

enzyme, obtaining three tangle equations:

U þ X ¼ Hopf link

U þ Xþ X ¼ Figure-of-eight knot

U þ Xþ Xþ X ¼ Whitehead link

We then solve these for X. This, remarkably, is possible, and there is

a unique answer. The tangle X has to act in exactly the way the

schematic figure assumes. But this is no longer just the simplest

guess, but a consequence of specific biological assumptions about

the enzyme action, verified by experiment.

Can we make a prediction, a new experiment that will test

whether the theory is correct? We can. Even more rarely, there

ought to be a fourth action of the enzyme, leading to

UþXþXþXþX. Since X is now known, we can work out which knot

or link this is. It turns out to be a knot with no familiar name,

which topologists call 6�
2 (see Figure 49). The prediction, then, is

that even less frequently than the triple reaction, we will observe

the knot 6�
2. And observations do indeed detect precisely this knot,

with roughly the predicted degree of rarity.
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............
Mathematical issues that sound fairly similar to those that arise

with knots, but technically are very different, arise in a related area

of molecular biology: protein folding. Although a protein is

conceptually a chain of amino acids, in reality the chain folds up in

a complex way under the influence of molecular forces. The basic

point here is that the DNA, interpreted as amino acids, does not

‘contain the information’ that tells the protein how it should fold.

Instead, the protein folds automatically, in response to the

chemicals in the surrounding medium, the activity of special

molecules called chaperonins which nudge it into particular

configurations, temperature, and other factors.

Biologists often consider that anything passively obeying the

laws of physics and chemistry is merely part of the background

against which biology works. From that point of view, all that

matters is that the physics does whatever the physics does. It can be

taken for granted, even ignored. An elephant pushed off a cliff will

fall – but that’s gravity, not biology. However, it is not possible to

assign protein folding to this kind of background operation of

physical law, because in principle proteins can fold in a huge

variety of ways. Even if in practice they fold in only one way, we

still need to know which shape arises, because a protein molecule’s

shape is one of the main features that determine its biological

function (or functions). Think of haemoglobin, which acts rather

like molecular tongs, picking up a molecule of oxygen and putting

it down again. If it weren’t the right shape, it couldn’t do the job.

Figure 51 shows how haemoglobin folds, and its two slightly

different configurations.2
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By the way, I’m not suggesting that haemoglobin is the only

molecule that can transport oxygen.3 Tongs can have differently

shaped handles without it impairing their function. Similarly, many

other proteins could in principle transport oxygen. But any suitable

molecule has to have a shape that lets it behave like oxygen-tongs. I

mention this because it is sometimes suggested that haemoglobin is

too complicated to have evolved – as if this specific molecule were a

target for evolution to aim at. On the contrary: evolution is

opportunistic, and will settle for anything that works.

This role of shape is not just of theoretical importance. Many

diseases, among them Creutzfeldt–Jakob disease, mad cow disease

(BSE) and probably Alzheimer’s disease, may be caused by misfolded

proteins. The ability to deduce the shape of a protein from its

amino acid sequence would be a huge step forwards in biology,

because sequencing DNA is now cheap and easy (if you have the

rather expensive equipment and skills required) but working out

the shape of a complicated protein is very hard.

The process was a huge puzzle until around 1990, when Joseph

Bryngelson and Peter Wolynes at the University of Illinois devised a

mathematical formulation in terms of an ‘energy landscape’. The

forces that act between atoms and electrons in a molecule imply

that any configuration of an amino acid chain (or any other

molecule, for that matter) has a definite amount of energy. The

mathematics and physics of dynamical systems imply that the

molecule will behave in a manner that tries to make its energy as

small as possible. Take an elastic band, and drop it on the desk. It

tends to take up one particular unstretched shape. However, you

can stretch the band into all sorts of shapes by pulling on different

bits of it with your fingers. As you stretch it, though, you feel a

certain amount of resistance. The more you stretch it, the harder

you have to pull. What’s happening here is that in order to stretch

the band, you have to increase its elastic energy. All the stretched

shapes have more energy than the natural unstretched shape, and

you have to do work to provide the extra energy. So the

unstretched shape is the shape with the least energy.

It’s much the same with a protein molecule, but the different

amino acids make it more like an elastic band with all sorts of

lumps and bumps. Nevertheless, the stretched-out-straight shape

has a lot of energy, and the protein molecule prefers to contract

into a less energetic shape. In this way, nature can produce a
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specific shape of molecule by stitching amino acids together in

turn, following the genetic instructions, and then just allowing the

chain to fold itself into the required shape. Minimisation of energy

does all the hard work, and the genes don’t need to tell the protein

how to fold.

In the metaphor of an energy landscape, variations in energy of

the conceivable configurations can be seen as hills and valleys,

creating a conceptual landscape in which height corresponds to

energy, and location in the landscape corresponds to the

configuration concerned.

It is not practical to determine the actual shape of the protein

by considering all possible shapes, working out the energy for each

and seeing which is smallest, because the range of possible shapes is

absolutely gigantic. It would be like trying to predict the shape of

an elastic band by considering every conceivable shape, however

implausible, computing the energy, and seeing which is smallest.

This is not the only difficulty. I said that the molecule always ‘tries

to make its energy as small as possible’, but that is an

oversimplification. I should have said ‘as small as possible, compared

with any nearby configuration’. The energy landscape may have a

local depression, even though the lowest point on the entire

landscape is far below that.

It is not only mathematicians who have trouble here. The

molecule itself is much like the elastic band. It has no idea where

the lowest point in the landscape is, so it heads downhill and finds

out where that leads. If it leads into a local depression, the

molecule gets trapped in the wrong configuration and the protein

can’t do its job. In the late 1960s, Cyrus Levinthal, then a

molecular biologist at Columbia University, realised that the energy

landscape for a typical amino acid chain can have a gigantic

number of possible local depressions.4 Suppose that the chain

consists of 300 amino acids – which if anything is on the small side

– and that the chemical bond linking each to the next can adopt

one of a mere three stable angles. These angles are more or less

independent, so the number of possible combinations is 3300,

roughly 10143. This leads to Levinthal paradox: as a real protein

chain folds, it cannot reach the ‘correct’ configuration by trying all

possible configurations in turn. The universe will not last long

enough.

The deduction is not that protein chains perform miracles, but
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that they don’t do it that way. A popular theory holds that

evolution has eased the path: to ensure correct folding, the chains

that are found in biologically significant proteins are not typical.

Instead of having rough energy landscapes, with lots of bumps and

hillocks, their landscapes form steep-sided funnels, with an obvious

route down into the depths where the desired configuration lurks

(see Figure 52). More precisely, they are made from a series of such

funnels, each feeding the configuration into the next funnel along

a specific path.5 The funnels are linked by saddle points – places

which are local energy peaks in some directions and local

depressions in others, like a mountain pass in a conventional

landscape. The pass is the lowest point through which a traveller

can cross a mountain ridge, so the path goes up to the pass and

then descends, but the ridge itself rises upwards from the pass.

The idea is that natural selection will favour proteins with

simple energy landscapes like this. Not because evolution somehow

knows what the landscape looks like, but because molecules that

often fold into a shape that doesn’t work will make the host

organism less likely to survive, so these proteins will be weeded out.
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Even if this theory were right, the mathematics of protein

folding would not become simple and straightforward, for other

reasons. But at least we would understand how the molecule gets

itself folded correctly.

............
Many different software packages make some kind of a stab at

predicting how a protein will fold, using a mixture of mathematical

principles and informed guesswork. A popular one is Rosetta, which

harnesses the power of idle computers worldwide through its

Rosetta@home project. This uses the Berkeley Open Infrastructure

for Network Computing (BOINC) to carry out huge computations

on a network provided by more than 80,000 volunteers, who allow

the use of their home computers when they are not otherwise

occupied. But in 2008 Seth Cooper and colleagues went one better,

by turning protein folding into a multiplayer online computer

game: Foldit. Players compete with one another and progress

through increasing levels of difficulty, looking for the right way to

fold a given protein.

Doing science using a computer game might seem an absurd

piece of deference to popular culture, but it makes very effective use

of something that humans have in abundance and computers lack:

intuition. The human brain is very good at spotting patterns, even

ones that it doesn’t consciously recognise. In 2010 Cooper’s team

reported that ‘top-ranked Foldit players excel at solving challenging

structural refinement problems’.6 The element of collaboration

seems to add further power to the human brain’s intuitive

understanding of three-dimensional shapes, and the competitive

instinct provides motivation – as it does even in conventional

science.

Foldit benefited from advice from professional game designers.

Players progress by solving a series of puzzles, initially based on

proteins whose structure is known, but not publicly available. Along

the way they learn the many technical terms and techniques based

on Rosetta, such as ‘combinatorial side-chain rotamer packing’, but

using more friendly terminology – in this case, ‘shake’. Then they

can progress to unsolved structures, with potential contributions to

serious science.

Foldit is an intriguing example of a growing trend in science:
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getting the general public to participate in scientific research using

distributed computing over the Internet. The problems have to be

set up in an easily accessible way, but once this is done, a vast

amount of computational power and human input becomes

available – at very little cost. It’s a trend that could go a long way.

As Zoran Popović, a project member, has said: ‘Our ultimate goal is

to have ordinary people play the game and eventually be candidates

for winning the Nobel prize.’

Foldit certainly beats Grand Theft Auto as a constructive way to

pass the time, though it might not give you quite the same

adrenaline rush.7
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13 Spots and Stripes
.................................

Painters, poets and writers have long been captivated by the

extraordinary beauty of animals in the wild. Who could fail to be

moved by the power and elegance of a Siberian tiger, the ponderous

enormity of an elephant, the haughty pose of a giraffe or the pop-

art stripes of a zebra?

Yet each of these animals began life as a single cell, a fusion of

sperm and egg. How do you cram an elephant into a cell?

When the paradigm of DNA as information was at its height,

the answer seemed simple. You don’t. What you cram into an egg is

the information required to make an elephant. Since that is in

molecular form, an awful lot of information can be confined to the

interior of a single cell.

If you do the sums, however, it’s clearly not that

straightforward. An elephant has many more cells in its body than

its DNA has bases. The cells come in many different types. They

have to be fitted together in the right way . . . Have you ever

considered how complicated an accurate, cell-by-cell map of an

elephant would be? Let alone putting in the complex organelles

and cytoskeleton inside each cell.

Part of the answer is the background of physical and chemical

laws (see p. 192). These laws operate automatically; in fact, you

can’t stop them doing so. A tiger’s DNA doesn’t have to contain

information about how chemical bonds fit together, how cells that

are sticky adhere to one another, how electrical impulses pass along

its neurons. All these things are implicit in the laws of nature.

However, that’s only part of the answer. It’s not enough to

assign anything you don’t find in DNA to the action of physical
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laws, because this fails to answer any of the big questions. In

particular: how does DNA regulate the complex processes of

chemistry, to turn that egg – seething as it may be with potential –

into a gigantic striped cat?

This is where mathematics can play its part in the great

scientific enterprise. We don’t, yet, have accurate mathematical

models for all the processes that convert egg into tiger, but we do

have models that provide insight into various stages of that process.

Mathematics can help us understand simple features of a growing

embryo, such as gastrulation, where a spherical mass of tiny cells

turns inwards on itself, the first stage in giving the eventual animal

an inside and an outside. There are many other applications of

mathematics to biological development, but I want to skip a few

stages to look at the most obvious features of many animals: their

markings.

............
The mathematician who opened up this area was an Englishman,

Alan Turing. Turing is famous for his wartime work at Bletchley

Park breaking the Enigma code, for developing the Turing test for

artificial intelligence, and for establishing the undecidability of the

halting problem for Turing machines. (That is, there is no

systematic way to determine whether any given computer program

will terminate with an answer, or go on for ever – for example, by

repeating the same instructions over and over again indefinitely.)

From these activities it might appear that Turing was a pioneer in

computer science and cryptography, which is true, and that he

specialised in these areas – which is false. Another mathematical

interest of his was the markings on animals. Spots, stripes, dappled

patterns . . .

For half a century, mathematical biologists have built on

Turing’s ideas. His specific model, and the biological theory of

pattern-formation that motivated it, turns out to be too simple to

explain many details of animal markings, but it captures many

important features in a simple context, and points the way to

models that are biologically realistic (Figure 53, see over).

It all started in the early 1950s, when Turing became puzzled

about the geometry of animal form and markings: the stripes on

tigers and zebras, the spots on leopards, the dappled patches on
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Friesian cows. Although these patterns do not display the exact

regularity that people often expect from mathematics, they have a

distinct mathematical ‘feel’. We now know that the mathematics of

pattern formation can produce irregular patterns as well as regular

ones, so the irregularities are not evidence that mathematical

models of animal patterns are wrong.

Turing presented his theory of pattern formation in a celebrated

paper entitled ‘The chemical basis of morphogenesis’, published in

1952.1 He modelled the formation of animal markings as a process

that laid down a ‘pre-pattern’ in the developing embryo. As the

embryo grew, this pre-pattern became expressed as a pattern of

protein pigments. He therefore concentrated on modelling the pre-

pattern. His model has two main ingredients: reaction and

diffusion. Turing imagined some system of chemicals, which he

called morphogens, ‘form-generators’. At any given point on the

part of the embryo that eventually becomes the skin – in effect, the

embryo’s surface – these morphogens react together to create other

chemical molecules. The chemicals and their reaction products can

also diffuse, moving across the skin in any direction.

Chemical reactions require nonlinear equations, ones in which –

for example – twice the input does not yield twice the output.

Diffusion can sensibly be modelled by simpler linear equations:

twice as much of some molecule, diffusing from some given

location, leads to twice as much everywhere. The most important

result to emerge from Turing’s ‘reaction–diffusion’ equations is that

local nonlinearity plus global diffusion creates striking and often

complex patterns (see Figure 54). Many similar equations can

produce patterns, not just the specific ones proposed by Turing.

What distinguishes them is which patterns occur in which

circumstances.
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Fig 54 Above: Regular Turing patterns: spots and stripes. Below: Less regular

Turing patterns.

............
Hans Meinhardt, at the Max Planck Institute for Developmental

Biology in Tübingen, has made extensive studies of many variants

of Turing’s equations. In his elegant book The Algorithmic Beauty of

Seashells he examines many different kinds of chemical mechanism,

showing that particular types of reaction lead to particular kinds of

pattern. For example, some of the chemicals inhibit the production

of others, some activate the production of others. Combinations of

inhibitors and activators can cause chemical oscillations, resulting

in regular patterns of stripes or spots. Meinhardt’s theoretical

patterns match those found on real shells.

Use of the word ‘pattern’ does not imply regularity. Many

striking patterns on seashells are complex and irregular. Some cone

shells have what seem to be random collections of triangles of

various sizes (Figure 55, see over). Mathematically, patterns of this

kind can arise from Turing-like equations; they are fractals, a

complex kind of geometric structure popularised by the French-

American mathematician Benoı̂t Mandelbrot working at Yale in the

1960s. Fractals are closely associated with dynamical chaos –

irregular behaviour in a deterministic mathematical system. So the

cone shell combines mathematical features of order and chaos in

one pattern.
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The Scottish mathematician James Murray of the Universities of

Washington and Oxford has applied Turing’s ideas, suitably

modified and extended, to the markings on big cats, giraffes, zebras

and related animals.2 Here the two classic patterns are stripes (tiger,

zebra) and spots (cheetah, leopard). Both patterns are created by

wave-like structures in the chemistry. Long, parallel waves produce

stripes. A second system of waves, at an angle to the first, can cause

the stripes to break up into series of spots. Mathematically, stripes

turn into spots when the pattern of parallel waves becomes

unstable. Pursuing this led Murray to an interesting theorem: a

spotted animal can have a striped tail, but a striped animal cannot

have a spotted tail. The smaller diameter of the tail leaves less room

for stripes to become unstable, whereas this instability is more likely

on the larger-diameter body.

In 1995 the Japanese scientists Shigeru Kondo (Kyoto University

Centre for Molecular Biology and Genetics) and Rihito Asai (Kyoto

University Seto Marine Biological Laboratory) used Turing’s

equations to make a startling discovery about the colourful tropical

angelfish Pomacanthus imperator. Along two-thirds of its body run

parallel stripes of yellow and purple. Stripes are an archetypal

Turing pattern, but there is an apparent technical difficulty. In this

particular case the mathematics of Turing patterns makes a

surprising prediction: the stripes of the angelfish have to move.

Stable steady patterns are not consistent with the mathematical

formalism.
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Moving stripes? It seemed bizarre. However, Kondo and Asai

decided to keep an open mind. Maybe angelfish stripes do move. To

find out, they photographed specimens of the angelfish over periods

of several months. They found that the stripes do, in fact, migrate

across its surface (see Figure 56).3 As they move, certain defects in

the pattern of otherwise regular stripes, known as dislocations, break

up and reform exactly as Turing’s equations predict.

............
Pattern formation is predicted by a variety of mathematical models,

many of which give rise to the same catalogue of possible patterns –

those that occur in nature as stripes in ocean waves, on tigers and

on angelfish, for instance. There ought to be some deeper, general

reason for these similarities – indeed, for the patterns themselves.

There is, and it’s called symmetry breaking.
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In normal parlance, something is symmetric if it has an elegant,

balanced form. More specifically, we talk of an object having

bilateral or mirror symmetry if it looks the same as its reflection in

a mirror. The human body comes close to this, although a person

and their mirror image differ in minor details, and the arrangement

of internal organs can differ markedly.

There are more complicated types of symmetry; my favourite

example is the starfish. The most common starfish found around

the British Isles has five arms, each arm more or less identical to the

others, all of them arranged in something close to a five-pointed

star. A starfish does have mirror symmetry, but the most obvious

symmetry is not a reflection, but a rotation: each arm is separated

from the next by 728, one-fifth of a turn.

Symmetry is not about parts of some shape being similar to one

another: it is about the effect of some transformation on the whole

shape. Does the shape appear to stay the same when reflected? If so,

it has mirror symmetry. Does it appear to stay the same when

rotated? Then it has rotational symmetry. As we’ve seen, this idea

has become a formal mathematical theory: group theory, so named

because any two symmetries combine to yield another one. The set

of all symmetries of an object is its symmetry group.

Not only can the solutions of mathematical equations have

symmetries; the equations themselves can have symmetries. The

algebraic formula xþy is symmetric in the two numbers x and y: if

you swap them, you get the same sum. More generally, an equation

is symmetric if applying some transformation to the symbols yields

the same equation. By the middle of the last century’s first decade,

Albert Einstein had already noted the importance of this type of

symmetry in the laws of physics, the basic equations for space,

time, energy and matter. He insisted that these laws must be the

same at every point of space and at every instant of time.

It may seem surprising that solutions can have less symmetry

than the equations they solve. Working in Paris a few years before

Einstein, Pierre Curie suggested that this should not be possible

because of a simple physical principle: symmetric causes produce

equally symmetric effects. Curie’s principle seems to rule out a

change of symmetry from equations (‘causes’) to solutions

(‘effects’). But if the universe itself had that much symmetry,

looking exactly the same in every location and at every instant, it

would be uniform and unchanging, like a universe composed
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entirely of cosmic custard. So there must be some escape clause.

There is: it’s symmetry breaking, and its consequences are both

beautiful and far-reaching.

How can symmetry break? More precisely, how can a solution of

an equation have less symmetry than the equation itself? If an

equation is symmetric, then some transformation of the symbols

yields the same equation. So applying that transformation to a

solution also yields a solution.

However, it need not be the same solution. This is the loophole

that makes symmetry breaking possible.

In our algebraic example, the sum xþy of two numbers is

symmetric in x and y. If we swap x and y, it becomes yþx; formally,

this looks different, but it always yields the same answer. That

statement remains true for specific choices of x and y, such as 17

and 36. With these choices 17þ36¼36þ17. But this does not imply

that 17 and 36 remain the same if we swap them. On the contrary,

17 turns into 36, which is different. Of course, 36 correspondingly

turns into 17 – but again, those two numbers are different. So the

solution x¼36, y¼17 is different from the solution x¼17, y¼36.

Curie’s principle is correct as it stands for equations that have only

one solution. But when there are many solutions, which turns out

to be very common, the principle as originally stated fails. Instead,

all we can assert is that whenever we have a solution, we can obtain

other solutions by applying symmetry transformations.

............
We’ve seen that symmetry is very common in mathematical models

of the natural world, so symmetry breaking should also be

common. And so it is. In fact, it provides a very general mechanism

for the formation of nature’s patterns. Those patterns are the

explicit realisations, in specific physical systems, of the abstract

symmetries that are implicit in the laws that describe those systems.

Multiple solutions open the door to symmetry breaking. What

shoves the mathematics through that door is instability.

On the left of Figure 57 (see over) is a satellite photo of part of

the Rub’ al-Khali desert in Saudi Arabia, often known by its English

name, the Empty Quarter. The stripes are huge sand dunes.

Although there are irregularities, the stripes are pretty much parallel

to one another and equally spaced. The pattern is caused by strong
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and steady trade winds, which in this case blow in the same

direction as the stripes: accordingly, these are known as

longitudinal dunes. Striped dunes can also occur when the wind

blows at right angles to the stripes: the result looks much the same,

but the different mode of formation requires a different name:

transverse dunes. The right-hand photo shows transverse dunes on

Mars.

There are many other dune patterns, including wonderful

crescent shapes and stars, but striped dunes are the simplest. Now,

it might seem that the strong patterns in the dunes must reflect

equally strong patterns in the way the wind blows, but longitudinal

and transverse dunes typically form when the wind is steady. In

fact, the steadier the wind, the more regular the dune pattern.

Of course once the dunes have formed, they affect the wind in

their locality, but you don’t need a striped wind to create striped

dunes.

Why not?

To avoid confusion, let me focus on transverse dunes.

Longitudinal dunes have a similar, perhaps simpler, explanation,

but the transverse ones will serve my purpose better later on.

Imagine a perfectly flat desert, over which a steady wind blows,

at the same speed and in the same direction everywhere. No such

desert can exist in reality, of course, but this ideal case homes in on

the essence of the puzzle: how a uniform wind can lead to a striped

desert. The key is symmetry, and how it breaks. My idealised desert

is very symmetric. In fact, the only departure from the symmetry of
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a mathematical plane is the existence of a preferred direction, that

of the wind. So the transformations that preserve the system

include no rotations, and the only reflectional symmetries occur for

mirrors aligned with the wind direction. However, I can slide the

entire desert north, south, east or west, and the system – and

therefore also its mathematical representation – will look exactly

the same.

If the behaviour of the sand in response to the wind were as

symmetric as the system itself, there would be no patterns. The

state of the sand, and in particular the height of the desert surface,

would be identical at every point. So the sand would stay flat, and

the symmetry of the system would not break.

If we inject just one element of realism, however, this picture

changes dramatically. Sand is not smooth: it comes in tiny grains.

Those grains poke above the surface in places, and there are gaps

between them. The surface departs from perfect planarity by a very

tiny amount. And those departures are pretty much random. Such a

system has no symmetry at all. However you transform the desert,

the sand grains will not repeat the exact same pattern.

The difference is tiny, but what actually happens in a (fairly) flat

desert subjected to (fairly) constant winds is huge and dramatic.

Great mounds of sand appear, many thousands of times the size of

the sand grains that cause the departure from exact symmetry. And,

very commonly, the dunes have large-scale patterns: transverse

dunes, for example, are arranged in regularly spaced parallel stripes

like waves on a beach. Ocean waves move, and so do transverse

dunes: they move at right angles to the stripes. But they do so very

slowly, as sand is blown off the crest of each dune and is deposited

somewhere ahead of the crest.

Parallel rows of dunes have quite a lot of symmetry. They form

a striped pattern in the plane, and this can be slid sideways along

the direction of the stripes. It is also unchanged if it is slid

perpendicular to the stripes, through a distance that is any integer

multiple of the distance between adjacent stripes – the actual

spacing, twice that, three times, and so on.

This is remarkable. The symmetry of the typical pattern of

behaviour resembles neither that of the perfect idealised model,

with complete translational symmetry, nor the small but total

asymmetry of real sand grains. Instead, it lies somewhere in

between. And it turns out that the idealised model can reproduce
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exactly that kind of pattern, if it is tweaked very slightly to mimic

the random but tiny deviations from perfection introduced by the

granular nature of sand. In such a model, the sand remains very

close to a perfect plane provided the wind speed is sufficiently low –

low enough not to disturb any sand grains. But for higher wind

speeds this undisturbed state becomes unstable. Any tiny

imperfection, however small, grows. If a grain of sand pokes up

slightly more than its neighbours, the wind picks it up and blows it

somewhere else. The resulting hole creates a bigger difference in

height, and the grains on either side become more exposed and also

get blown away. The hole grows, and the displaced sand piles up.

However, the sand does not pile up at random. Instead,

feedback between the shape of the desert surface and the

movement of the wind homes in on a stable pattern: waves of sand

and waves of wind. In the right range of wind speeds, that pattern

is transverse dunes.

Where has the symmetry of the system gone?

That could be a silly question. Symmetry isn’t a physical

substance that can’t be annihilated without creating something

else. Symmetry is a concept, a property. But in this case it’s not a

silly question, because the missing symmetry has gone somewhere.

It exists as unrealised potential. That pattern of stripes could have

formed in any position. Its actual position was a consequence of the

first grain of sand starting to move. Potentially, that grain of sand

might have been anywhere in the desert. If so, the entire process

would have taken place some distance away – so the crests of the

potential dunes would have formed somewhere in the troughs of

the actual ones. The symmetry of the system is not so much broken

as shared among the entire set of possible solutions.

A model that predicts the formation of transverse dunes cannot

specify the exact location of their crests and troughs. If we moved

the entire pattern forward ten metres, it would also satisfy the

equations of the model. In fact, if we waited long enough the wind

would actually move the pattern into that position. At any given

moment, the location of the crests and troughs depends on the past

history of the dunes.

There are profound mathematical techniques for calculating

stabilities and working out which patterns appear when fully

symmetric states become unstable. They are very technical, but in

general terms they suggest that nature prefers not to break
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symmetry much more than it has to. Typical patterns arising in a

symmetric system through spontaneous symmetry breaking tend to

have a lot of symmetry rather than just a little. This statement can

be made precise, in any particular instance: if taken too literally it is

false, but on the whole not by much.4 When it is false, the

mathematics tells us what to expect instead.

............
What about animal form? Form and pattern are two aspects of the

same thing: morphology. Both form and pattern seem to be set up

in embryos through a chemical pre-pattern induced by a

morphogen. The pre-pattern sits there until the organism reaches

an appropriate stage of development, at which point the varying

chemical concentrations in the pre-pattern trigger either the

formation of pigment proteins, creating visible patterns, or cellular

changes, creating form.

There are disagreements about the precise mechanism that sets

up the pre-patterns and about the precise mechanism that turns

pre-patterns into visible patterns or form. Many of the chemical

changes involved clearly have a genetic component – particular

genes ‘switch on’ simultaneously in blocks of cells, stimulating the

production of some pigment, or causing the cells to modify their

mechanical or chemical properties. Pre-patterns alone cannot

explain morphology: their interaction with genes presumably can.

Meinhardt has applied Turing equations, together with simple

genetic ‘switching’ ideas, to the formation of somites in developing

vertebrate embryos.5 Somites are equally spaced pairs of blocks of

differentiated tissue which eventually form the basis of the

backbone. They come into being, one pair at a time, starting from

the head end of the animal. On general mathematical grounds,

however, Meinhardt was led to a counter-intuitive mathematical

prediction. The diffusing chemical waves that trigger the formation

of somites should originate not from the front of the animal, but

from the back.

Why? Imagine ocean waves carrying floating debris up onto a

beach, as the tide is going out. One wave reaches up to the top of

the beach and deposits a strip of driftwood and seaweed. The next

wave doesn’t reach quite as far, thanks to the falling tide, so it

leaves a line of debris further down the beach. Step by step, the
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waves travelling up the beach create a series of stripes of debris that

accumulates down the beach. That way, the beach between the

waves and the debris remains pristine, so the waves can deposit

more debris using exactly the same process. The existing debris

doesn’t get in the way.

For somites, the waves are waves of concentration of some

morphogen, and the debris that is deposited is a series of genetic

‘switches’ that change the state of the relevant cells. Again, the

somites that have already formed would interfere with incoming

waves unless the waves came from the back. Meinhardt made this

prediction over fifteen years ago, as a consequence of Turing’s

mathematical scheme. The new-found ability to make genetic

switching visible has shown that he was basically correct.

Despite these remarkable achievements, Turing’s equations for

animal markings have unsurprisingly – given the pioneering nature

of his work – not been a complete success: they often fail to predict

experimental details, such as what happens when you grow

organisms at different temperatures. Turing was the first to attempt

this kind of modelling, and he kept the model as simple as he

dared: at that time solutions had to be calculated by hand. His

theory has spun off many more sophisticated modern descendants,

each of which attempts to address such deficiencies.

Whatever the details, though, the spatio-temporal patterns of

activity of the genes are taken, virtually unchanged, from Turing’s

mathematical pattern-book. So it looks as if DNA guides

morphogenesis along certain lines, but what then happens is

heavily dependent on the laws of physics and chemistry too, hence

upon context.

We know a lot about how DNA makes proteins, but in

comparison we know very little about how those proteins are

marshalled together to create an organism. The problem of

biological development is one of the biggest scientific challenges we

face. How do organisms regulate their own growth patterns? What

defines an animal’s body plan? How is its form transferred from the

DNA drawing-board to the developmental assembly line? The

answers will involve chemistry, biology, physics and mathematics.

And they will be nowhere near as straightforward as just obeying a

list of genetic instructions.
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............
The availability of powerful computers provides an alternative to

classical continuum models like Turing’s. Instead of approximating

animal tissue by an infinitely divisible region of space, we can

model the tissue cell by cell. We can study how cells affect their

neighbours, how their internal dynamics and genetic regulatory

systems conspire with the external world to determine their fate.

At the start of this chapter I mentioned gastrulation, the stage

in embryonic development at which the growing mass of cells

pretty much turns itself inside out. This process looks

mathematical: it typically starts when a circular arc forms on the

surface of a hollow sphere of cells; this becomes the lip of the

inwardly folding portion of the surface. Many people have built

mathematical models of gastrulation, but biologists know that the

entire process is regulated by a few genes, and what they’d like to

know is how the genetics interacts with the geometry.

In the 1990s, working at the Artificial Intelligence Laboratory in

Zurich, Peter Eggenberger Hotz devised a series of mathematical

models that incorporated the role of genes.6 A typical strategy is to

start with a grid of cells, represented as adjacent spheres, and write

down a list of dynamical rules for how the genes present in these

cells interact with those in neighbouring cells. A gene is activated

(or inhibited) only when the total concentration of incoming

signalling molecules exceeds a threshold level. The cell then

responds to the activity of this gene, either by sending out its own

signalling molecule, making a cell adhesion molecule that connects

it to a nearby cell, or by equipping that cell with a receptor that can

respond to an incoming signalling molecule. Additionally, the cell

may respond by dividing or by dying.

The model is then simulated on a computer, following the

dynamical rules and seeing what transpires. Depending on the

choices made for the dynamics, the collection of cells may grow

and develop in interesting ways. The shape that the mass of cells

takes up is calculated using a fairly realistic set of equations for a

collection of objects that interact through stickiness and elasticity,

two key properties of a real cell.

As the mass of simulated cells develops, genetic signals cause

the cells to change position in space. These changes in turn affect

the activity of the genes and the signals they produce. The feedback

loop between genes and form leads to the eventual shape of the
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mass of cells. The model can be used for many purposes, for

example to explore the effect of a morphogen on morphology. One

version of the model mimics gastrulation in a hollow sphere of

cells.

Because the entire model exists in a computer, it is possible to

investigate features of the structure that are difficult or impossible

to observe in a real developing embryo, such as the concentrations

of signalling molecules at various locations. This is a major

advantage of all models. The corresponding disadvantage is that

they are not the real system. As Eggenberger remarks, ‘Putting

evolutionary techniques on firm ground, where the mechanisms

can be understood, is itself a major reason to investigate the

potential of such systems.’
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14 Lizard Games
.................................

A male lizard has secured himself a female, and soon the pair will

mate. She seems to like his sky-blue throat, and the two of them are

often seen walking out together. But suddenly this lizard equivalent

of marital bliss is shattered by an intruder. He is bigger and stronger

than the blue-throated lizard, and his throat is orange. He threatens

the blue-throated lizard, hoping to drive him away and steal his

female. When the blue-throated lizard resists, the orange-throated

one attacks.

This turns out to be a tactical error on both their parts, because

while they are engaged in battle, a smaller lizard with a yellow

throat sneaks up on the female and mates with her.

This reptilian soap opera is played out over and over again on

some of the many islands that dot the western coast of North

America. Since the males are competing for the same female, we

would expect them all to belong to the same species, and despite

their different colours, they do. The males are different ‘morphs’ –

types – of the common side-blotched lizard, scientific name Uta

stansburiana.

Their Heat-magazine-style mating strategies have remarkable

consequences.

Barry Sinervo, working from his lab at the Department of

Ecology and Evolutionary Biology at the University of California in

Santa Cruz, has been following the patterns of heredity in one

population of common side-blotched lizards since 1989. Because

they live on the same island and interbreed, they can be assigned to

a single species with some confidence. As we have just seen, the

males of this species occur in three distinct morphs, and the main
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distinguishing feature is the colour of the lizard’s throat, which can

be orange, blue or yellow. The three morphs also differ in size, with

the orange-throated ones tending to be larger and the yellow-

throated ones smaller.

These colours seem to be an example of what Darwin called

sexual selection: they relate not to general survival characters, but

to female preferences when choosing mates. Anything that the

ladies prefer tends to become more common, because it gets passed

to their offspring. The peacock’s gigantic, brightly coloured tail and

the gaudy and bizarre decorations of birds of paradise are familiar

examples.

Year in, year out, each morph follows its own particular mating

strategy. Blue-throated male lizards form strong pair bonds with

their females; orange-throated and yellow-throated ones don’t.

Orange morphs, which are the strongest, fight blue ones and take

away their females. Yellow ones are coloured much like females,

and thanks to this disguise they can take advantage of fights to

approach without causing alarm, and mate with the disputed

female. The blue ones rely mostly on strong pair bonding, tend to

lose out to the stronger orange ones, but can defeat the yellow

ones. In simplified terms:

. orange beats blue,

. blue beats yellow,

. yellow beats orange.

So orange is fitter than blue is fitter than yellow is fitter than . . .

orange. So much for ‘survival of the fittest’.

What on earth is going on here? How does this evolutionary

competition pan out, and how does it fit into a Darwinian picture?

............
One of the biggest problems with the theory of evolution is that

everyone thinks they understand it. But it would be much fairer to

say that no one understands it – not even evolutionary biologists.

Evolution is extremely complex and extremely subtle. It is not just

a matter of the ‘best’ or ‘fittest’ creature winning the battle for

survival. If it were, then one colour of male common side-blotched

lizard would have displaced the other two long ago.
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Is this a sign that, for these lizards, evolution doesn’t work? It

certainly looks that way if you take the slogan ‘survival of the

fittest’ literally and interpret it naively. Even if these lizards’ strange

mating habits did evolve, they make it clear that the slogan is not a

very good one. For this kind of reason, biologists avoid it.

Survival as such is not the main criterion for natural selection to

operate: what counts is whether a creature manages to breed. It

obviously has to survive to breeding age if it is going to have any

chance of breeding, but it may fail to breed even if it has survived.

The lizards demonstrate this point admirably. In innumerable

species, only a few males breed, and they spend much of their time

fighting the others to protect their own conjugal rights.

Moreover, the concept of ‘fitness’ in evolution is slippery. It’s

not just a matter of assigning a fixed measure of fitness to each

creature, and comparing the numbers to determine which one will

out-compete the other. If it were that simple, the planet would end

up with exactly one species: the fittest one. But life on Earth is not

like that. Natural selection is not like that either, and neither is

biological fitness.

Evolutionary biologists have a love–hate relationship with

fitness. They are aware of its shortcomings, but some of them feel

that if these can be circumvented, the concept adds predictive value

to evolutionary theory. What quickly becomes clear, if you follow

that line of thought, is that the fitness of an organism does not

depend just on the organism: it also depends on the context. In a

game of golf, Tiger Woods would be fitter (much fitter) than me,

but in a game of mathematics I would be fitter than Tiger. Paula

Radcliffe would be fitter than either of us if we were running a

marathon. What makes organisms ‘fit’ depends on which game is

being played, as well as on the organisms playing it.

If we insist on understanding the behaviour of the three lizards

in terms of some concept of fitness, tailored to their particular

games, then the definition of fitness must depend on which game

the creatures are playing. Yellow-throated males will lose out

against orange-throated ones in a straight fight, but they can win if

the orange-throated one is distracted by a battle. The blue-throated

lizards’ devotion to their mates will defeat the yellow-throated

lizards, but not the orange. And the orange-throated lizards can

beat the blue-throated ones in a fight, but they have difficulty

keeping an eye on those sneaky yellow-throats.
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............
I referred to the lizard soap opera as a game – and so it is, in two

senses. First, it has a lot in common with a game that children like

to play. Second, both the lizards’ game and the children’s one can

be modelled by a specific mathematical process, which happens to

be called a game. Accordingly, the relevant area of mathematics is

called game theory.

The childhood game I have in mind is scissors–paper–stone.

Each player holds one hand behind their back and chooses either

scissors, paper or stone by appropriate placement of the fingers: two

separated fingers for scissors, flat palm for paper, clenched fist for

stone. The payoffs (wins and losses) are governed by the rule that

scissors cuts (beats) paper, paper wraps (beats) stone, and stone

blunts (beats) scissors. Suppose Alice and Bob play, with Alice going

first. With a point score of 1 for a win, �1 for a loss and 0 for a

draw, the table of payoffs for Alice (technically called the payoff

matrix) is as shown in Figure 58. The payoffs for the second player

are the same, except 1 and �1 are swapped. That is, if Alice wins

then Bob loses, and conversely.

Intuitively, scissors–paper–stone is fair: neither player has a clear

advantage. This would not be the case if, to take an extreme

example, the payoffs were such that Alice always wins, with 1’s

everywhere. In fact, scissors–paper–stone is symmetric: it treats both

players equally. I won’t formalise this idea of symmetry – it can be

done, but it’s technical and doesn’t have a lot of content – but

whatever move Alice chooses, Bob has a choice of one winning

move, one losing move and one move that leads to a draw. So there

is no bias against Bob. By the same argument, there is also no bias
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against Alice. We therefore expect that in the long run neither

player will come out ahead to any significant degree. This turns out

to be true, as long as the players don’t introduce a degree of bias by

making ‘bad’ choices.

Suppose, for instance, that Alice chooses scissors significantly

more often than paper. Then Bob may notice. If he does, he could

choose stone on every play and come out ahead, because in that

case Bob wins whenever Alice chooses scissors, loses when she

chooses paper and draws when she chooses stone. So Bob will win

in the long run. In practice, if Bob’s strategy were that obvious,

then Alice would notice and start playing paper every time instead.

However, the same reasoning applies if Bob makes random choices,

but biases them in favour of stone: he will come out ahead if Alice

favours scissors.

Pursuing this analysis leads to the reasonable conclusion (also a

consequence of symmetry) that Alice should choose each possible

move at random, with probability 1/3. Bob should do the same.

Indeed, if one player departs from such a strategy, either by

introducing regular patterns such as alternating paper with scissors,

or by using probabilities that differ from 1/3, then the other player

can find a response that wins in the long run.

Scissors beats paper beats stone beats scissors . . . Familiar?

Orange beats blue beats yellow beats orange.

Could the common side-blotched lizards’ mating games

somehow be analogous to scissors–paper–stone? And if they were,

what would that tell us?

............
The great Hungarian-American mathematician John Von Neumann

was one of the father figures of computing and a polymath who

ranged over many areas of mathematics. A child prodigy born into

a Jewish family, he spent four years teaching at the University of

Berlin, and then went to Princeton University in the USA. When

the Institute for Advanced Study at Princeton was created in 1933,

he was one of the founding professors. Another was Albert Einstein.

In 1927, having turned his mind to economics, Von Neumann

invented a new branch of mathematics: game theory. A year later

he made a fundamental discovery, the minimax theorem. Further

developments led to the 1944 Theory of Games and Economic
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Behavior, written with Oskar Morgenstern, which hit the front page

of the New York Times.

A game, in Von Neumann’s sense, is a simple mathematical

model of two (or more) competing players, each faced with various

choices, in which the payoff to each player depends on the

combination of choices that they make. The players are assumed to

know the table of payoffs, but have no knowledge of their

opponents’ choice. The game can be played just once, in which

case we have to analyse the probability of winning or losing, or it

can be played many times, in which case we can analyse the

frequency of winning or losing (and how much is won or lost). A

basic theorem in probability theory, the law of large numbers, says

that in the long run the frequencies ‘almost always’ give the

probabilities, so the two ways of thinking are mathematically

equivalent. The usual choice is to consider what happens when the

game is played many times, because our intuition for this is better

than our intuition for one-off probabilities.

Scissors–paper–stone is a typical game, with one exceptional

feature: its threefold symmetry. Most games treat different

combinations of players in different ways. For instance, in the

hawk–dove game, the players are in contention over some resource.

Hawks always choose to fight, and escalate the battle until either

they are injured or the other player breaks off the engagement.

Doves always retreat from hawks. Depending on the entries in the

payoff matrix, there can sometimes exist mixed strategies in which

the best way to play is to switch randomly from hawk to dove and

back again with particular probabilities.

Game theory first took off in 1928, when Von Neumann proved

the minimax theorem. This states that in a particular class of two-

person games with a very simple structure, there always exists a

mixed strategy that permits both players simultaneously to make

their maximum losses as small as possible. But this discovery was

only the beginning. Another important piece of the puzzle fell into

place when John Nash, the subject of the book and movie A

Beautiful Mind, made a fundamental breakthrough for games with

many players. He defined the concept of a Nash equilibrium and

proved that one always exists. A set of players is in Nash

equilibrium if each member of the set is making the decision that is

best for them, given the decisions that the others have made. This

is a sensible candidate for a rational strategy.
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The person most responsible for the systematic application of

game theory to evolutionary biology is John Maynard Smith. In

1973, in collaboration with the London-based American population

geneticist George Price, he put forward one of the most important

concepts in the field: that of an evolutionarily stable strategy. This

is a refinement of a Nash equilibrium, and it pins down the

conditions under which no mutant can successfully invade a

population: a type of evolutionary stability.

Imagine a population of organisms, all of which have adopted –

evolved – a particular survival strategy. In a genetic interpretation,

this strategy will be inherent in their genes, as a result of many

generations of natural selection. The organisms will not be

consciously aware that they are adopting a strategy; it will simply

be something that they do naturally, which has evolved because it

works. Now suppose that there is some kind of genetic mutation, so

that a similar organism, with a different strategy, suddenly appears

in their midst. Can the mutant successfully establish a lineage of

surviving descendants, or will it be weeded out by natural selection?

For example, consider the hawk–dove game in the trivial case

where the population consists only of doves. This is not an

evolutionarily stable strategy, because any hawk mutant can

successfully invade – hawk always wins against dove. That is, hawk

receives a positive payoff, while dove gets zero.

Maynard Smith devised a mathematical definition of an

evolutionarily stable strategy. Suppose there is a finite list of

available strategies. Let E(A,B) be the payoff to an individual who

adopts the original strategy A against an opponent who adopts

strategy B. This is an entry in row A and column B of the payoff

matrix.

Before the mutant appears, there is only one game in town: the

entire population is playing the same Old strategy, and the payoff

to each individual is E(Old,Old). When the mutant appears, it

adopts a strategy New. The payoff to the mutant is then E(New,Old).

If E(Old,Old) is greater than E(New,Old), then the mutant will lose

the competition against any member of the original population, so

its lineage will be weeded out. There are two other possibilities:

either E(New,Old) is greater than E(Old,Old), or the two are equal.

In the first case, the mutant wins and its lineage survives: it has

successfully invaded the population. In the second case, the mutant

loses out if the original strategy Old has a greater payoff against New
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than New does against itself; that is, if E(Old,New) is greater than

E(New,New).

The Old strategy is said to be evolutionarily stable if no mutant

can successfully invade.

Some games have evolutionarily stable strategies, others do not.

A general payoff matrix for two strategies Old and New looks like

this:

Old New

Old a b

New c d

An evolutionarily stable strategy exists provided a is smaller than c,

and d is smaller than b. The strategy concerned adopts Old with

probability (b�d)/(bþc�a�d), and New with probability (c�a)/

(bþc�a�d).1

When applying these models to real examples, the main

difficulty is to estimate the entries in the payoff matrix. In

principle, they could be estimated by playing one strategy against

another many times and seeing what happens on average. But in

practice this may not be possible. Suppose, for instance, that we are

trying to understand some stage in the evolution of dinosaurs. We

can’t pit dinosaurs against one another and see who wins. So the

entries have to be estimated on the basis of other factors.

Game theory sheds light on the evolution of new species, which

can arise when changes in the environment render a single-species

strategy evolutionarily unstable. If so, then a mutant can

successfully invade – and given enough time, a suitable random

mutation should arise. This doesn’t explain speciation, but it does

determine circumstances under which it might or might not be

possible.

............
Darwin titled his book The Origin of Species. Biologists have built on

its main ideas ever since. So can you guess what is one of the

biggest mysteries in evolutionary biology today?

That’s right. The origin of species.

However, that does not mean that Darwin was talking nonsense

and species have not evolved. It reflects the difficulty of
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reconstructing fine details of processes that occurred millions or

billions of years ago, and the rich complexity of today’s living

world. This is hardly surprising. What is surprising is how strong

the evidence for evolution is, and how much we already know

about it.

You may wonder how scientists can be sure that evolution has

happened when they don’t understand many of the details.

However, we are faced with exactly this situation on a regular basis.

We know that our child has learned things at school, but we

weren’t in attendance ourselves. We know that he or she has

learned to speak, requiring changes in the child’s brain, but we

don’t have high-resolution before and after brain scans to prove it.

We know that the cat brought a mouse in last night, because the

gruesome evidence is on the kitchen floor, but we never saw the cat

do it. Science is seldom about direct observation: it is nearly always

about indirect inference.

We know that evolution has occurred throughout the history of

life on Earth because many independent lines of evidence attest to

the general nature of the process. Some of this evidence has

survived for millions of years. We can measure the sizes of fossil

horses, correlate them with the ages of those fossils as determined

by the geological strata in which they are found, and see a slow but

steady trend towards larger and larger animals. But if we want proof

that two particular horses were competing with each other at some

particular instant of time, say 10.34 in the morning on 16 April

18,735,331 BC, then nothing short of a time machine would enable

us to observe the competition directly. Instead, we infer that in

general terms the horses were competing with each other, because

it is very hard to see how they could have avoided competing.

Population growth, if unchecked, would soon have caused horses to

overrun the entire planet. So something must have checked it, and

virtually any such process is a form of competition.

Were they competing for access to females? For food? What

kind of food? Why didn’t those two horses have enough for both of

them? Which one won? When the required level of detail gets too

high, there is no serious chance of answering such questions.
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............
Not only are we unsure of many details of the evolution of species,

but we don’t really have a good definition of what a species is.

Again, that does not mean that blackbirds cannot be distinguished

from whales. But certain fine distinctions are difficult to pin down

precisely. Ironically, this very difficulty supports the theory of

evolution: if species are not always discrete, separate groups, then it

is easier to see how natural selection might cause new species to

split off from old ones.

You might think that ‘species’ must have a straightforward

definition. After all, taxonomists classify organisms according to

which species they belong to. In the Linnaean scheme, you and I

belong to the species Homo sapiens, my cat belongs to the species

Felis catus and the silver birch tree in the garden belongs to the

species Betula pendula. This shows that particular species can be

defined, but it no more tells us what a species is than the list Toyota

Avensis, Ford Mondeo, Volkswagen Golf tells us what a model of car is.

One of the most popular definitions of species was advocated by

the German-American ornithologist Ernst Mayr: species are groups

of interbreeding natural populations that are reproductively isolated

from other such groups. This definition applies only to sexual

organisms, because ‘interbreed’ requires sex. As a working definition

– a guideline that works fine most of the time – it is pretty good.

However, it has a few drawbacks if it is taken literally and expected

to apply in all cases.

For instance . . . There is a chain of gulls, more or less

continuous, that begins in Britain, goes right round the world, and

ends up close to where it started. At one end are herring gulls; at

the other, black-backed gulls. These two types of gull satisfy Mayr’s

definition: they do not interbreed, hence are ‘reproductively

isolated’. They look different, and they are different. They both

coexist (without interbreeding) in Britain: mixed urban colonies are

found in Bristol, Gloucester and Aberdeen. However, along the

chain, each group of gulls can and does interbreed with its

neighbours. So by that same definition, all neighbours belong to

the same species as each other. Therefore herring gulls and black-

backed gulls must also belong to the same species. But they don’t.

It’s like a string of beads, each one the same colour as its immediate

neighbours, but with black at one end and white at the other.

An enormous variety of alternative definitions of ‘species’ have
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been proposed over the years. Mayr’s remains popular, but there are

circumstances in which it seems inappropriate: the gull story is far

from unique. Alternatives to interbreeding include the potential to

exchange genetic material, genetic similarity, morphological

similarity, ecological similarity, common ancestry and technical

ideas in cladistics.

Massimo Pigliucci is a biologist at Lehman College in New York

whose background includes genetics, botany, ecology and –

unusually – philosophy. He analysed the different definitions of

speciation in the literature, and found all of them lacking. Just as

Mayr’s proposal is confounded by an arc of gulls, so each of the

others fails to match some aspect of the rich and messy reality of

biology. On the other hand, each works pretty well within a limited

domain and for specific purposes. Pragmatically, that might be

considered good enough: this is the empirical view that ‘species’ is a

convenient way to distinguish organisms, and criticisms of any

particular definition are mostly linguistic nitpicking. But that

doesn’t answer a basic question: is ‘species’ a fundamental level of

organisation of the biological world, or is it an artificial

classification scheme foisted on us by taxonomists, with no real

significance for actual organisms? Pigliucci puts it like this:2

The so-called ‘species problem’ is one of those topics of

discussion among evolutionary biologists that has been present

since before Darwin’s publication of the aptly titled Origin of

Species (Darwin himself referred to it as an already old problem)

and will probably never go away . . . On the one hand,

[biologists] tend to turn away in disgust when species concepts

are brought up by colleagues, are the subject of papers, or are

discussed at conferences. On the other hand, they simply

cannot resist the temptation to offer graduate seminars on the

topic and avidly read anything that is published on the subject.

Many biologists consider the whole issue to be merely one of

semantics – finding an acceptable definition for practical purposes,

which matches empirical observations in the field. Pigliucci argues

that the problem goes deeper, with ‘strong philosophical overtones’.

He discusses three main themes that dominate the philosophical

literature on the problem: critiques of definitions proposed by

biologists, analysis of what kind of thing a species is (individual?

group? natural type?) and the possibility that more than one

concept of species is needed anyway, depending on context and
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purpose. The solution he proposes is founded on the philosopher

Ludwig Wittgenstein’s idea of ‘family resemblance’. The family

resemblance, he suggests, is real: it has biological significance, and

is not just a human invention that provides neat lists of types of

organism. However, by its nature it is difficult to pin down a

simple, neat, tidy definition that characterises this kind of family

resemblance.

Here is Pigliucci’s main conclusion, rephrased in terms

congenial to a mathematical biologist. First, we exploit the idea of

multidimensional spaces to represent a list of phenotypic (and/or

genotypic) data as a point in a conceptual space of many

dimensions. Call this phenotypic space. Then we plot the points

that correspond to each organism under investigation. We also

need some notion of how far apart or close together two organisms

are. There are many ways to set up such a ‘metric’ – by measuring

the differences in characters such as wingspan or beak size, by

comparing gene sequences, by looking at patterns of behaviour –

what food do they eat? – and so on. A cluster is then a collection of

data points in phenotypic space whose members are closer to one

another than they are to anything else. What emerges from this

viewpoint is that a satisfactory definition of species is elusive

because a definition of cluster is elusive – it depends on the choice

of metric, for instance. That’s Pigliucci’s philosophical point. The

distribution of organisms in phenotypic space is not a convention:

it is real, and can be observed. The problem is how to break the

distribution into clusters, and what that is taken to mean. On the

whole the answer is usually fairly obvious, which is why all the

traditional definitions work pretty well, most of the time. When

they don’t, there are two ways to proceed: tinker with the metric,

or refine the definition of a cluster.

A key feature of this proposal, says Pigliucci, is that it stops

biologists ‘wasting their time by trying to empirically solve a

problem that has philosophical components that cannot be settled

by the accumulation of new data’. Collecting vast quantities of data

about, say, the disputed taxonomy of lizards living on islands down

the west coast of North America will never resolve the taxonomic

issues, which are really about the choice of metric and the concept

of cluster involved. However, such data may contribute to the

analysis of the situation when the metric and concept are chosen,

and could even guide their choice.
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............
Looking for clusters within data may sound vague and woolly, but

there is an entire branch of statistics devoted to the topic: it is

called cluster analysis. As with any well-developed branch of

mathematics, cluster analysis applies many different methods to the

same general class of problems, and which one works best depends

on the problem. I’ll concentrate on the simplest method. In

practice it is performed using algebraic calculations on numerical

data, but the underlying idea is easier to understand in visual form.

Suppose that a field ornithologist on some exotic island is

observing birds. One thing they might do is capture birds, measure

various characters and record the measurements. For efficiency,

they would probably record several dozen characters, but to keep

the explanation simple and make it possible to draw pictures, I’ll

consider just two: beak size and wingspan. It doesn’t actually matter

what these variables represent: just that for each individual bird the

ornithologist gets two numbers. Having collected the data, the

ornithologist plots them on a diagram, which might resemble

Figure 59, where I’ve used made-up data for illustrative purposes.

I’ve also omitted scales from the axes.

The left-hand graph shows the plotted data. It’s difficult not to

notice that the points form two distinct clusters. The clusters might

correspond to two distinct species, or perhaps two subspecies within

a given species. Which of these is appropriate depends on the level

of detail: how wide the square is relative to the numbers that

constitute the data. If it’s a big square, then birds in one cluster are

significantly different from those in the other cluster, and the

clusters represent species. If the differences in data are just a few per

cent, we might be talking about subspecies.

As well as the two clusters, a single point lies on its own at
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lower right, and it’s not clear whether it belongs to the cluster to its

left, or is part of a third cluster. Such points are known as outliers

because they are rare exceptions to the overall pattern. The method

of data analysis means that their effect is small, and it makes little

difference to the results if they are discarded. But this point might

also represent a new, rare species, so in practice it would be better

to collect more data.

The eye easily separates the data into two clusters, but it is not

straightforward to program a computer to perform such a task. The

simplest form of cluster analysis seeks to separate the data into two

subsets by, in effect, drawing a line between them. More precisely,

the method sets up some combination of the two variables, such as

0:56ðwingspanÞ þ 7:36ðbeaksizeÞ
together with a threshold value, say 15. Any choice of these three

numbers splits the data into two subsets: one consisting of data for

which the combined value is greater than the threshold, the other

consisting of data for which it is smaller. If these numbers are

chosen correctly, then the two subsets will be widely separated, but

within each separate subset the numbers will be much closer

together. All of this can be made precise, and carried out as a

numerical calculation.

Figure 60 shows real data for the horned beetle Onthophagus

nigriventris. The two variables plotted are body size (horizontal axis)
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length for males (open circles) and females (solid circles) in the horned

beetle Onthophagus nigriventris.
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and length of horn (vertical axis). The open circles are males, the

black ones females. Ignoring this distinction, the most obvious

clusters are all the females together with some of the males, and the

rest of the males. The two are clearly separated – for example by a

horizontal line drawn through horn length 7mm.

If we introduce a third variable, sex, plotted in a third

dimension, then the males and females are immediately separated,

making the point that extra data measuring new phenotypic

variables can dramatically change the clusters. Since the distinction

between males and females is standard, and we expect significant

phenotypic differences between the sexes, it is a reflex to separate

the data by sex – hence the two colours of dots.

The males here all belong to the same species, even though they

are split between two clusters. In particular, they can all interbreed

with the same females, and the females form one cluster.

Nonetheless, the males clearly do split into two clusters, and

recording extra variables can only reveal further splits, if there are

any. These clusters represent two different morphs – phenotypes

that have evolved according to two distinct strategies within the

same population. Some males, called majors, go for big horns and

an aggressive personality. They employ their large horns to fight

other males, for access to females. The evolutionary advantage of

this strategy is clear: the bigger your horn, the more formidable you

are in combat. The other males, minors, develop rudimentary horns

and avoid combat. Experiments suggest that one advantage of this

strategy is greater manoeuvrability in tunnels. But it might allow

the minors to sneak up on females while the majors are having

their fights, because minors resemble females a lot more than they

do majors.

This kind of separation of mating strategies occurs in the males

of many species; we’ve already seen it in lizards. It is particularly

extreme in horned beetles. It might be a sign that the species is in

the process of splitting.

The use of straight lines, or their equivalents when there are

more variables, avoids the trap of using ever more complicated

formulas to model data. This can lead to an almost perfect fit

between data and model, but one that is entirely meaningless.

However, sometimes there are genuine clusters, but no straight line

can separate them. Think of a tight circular cluster surrounded by a

larger horseshoe-shaped one, for instance. Clusters like these can be

Profile Books - Maths of Life Data Standards Ltd, Frome, Somerset – 10/2/2011 01 Maths of life Chapters.3d Page 227 of 336

Lizard Games // 227



detected by allowing nonlinear terms in the algebra – such as the

square of the beak size or the beak size times the wingspan.

............
Recall that the divergence of a single species into two (or perhaps

more) distinct ones is called ‘speciation’. Evolutionary biologists

recognise many types of speciation, but there are two main ones:

allopatric and sympatric. The words are derived from Greek:

allos¼other, sym¼together, patra¼homeland. Speciation is allopatric

if it takes place in different locations, in a specific sense that I will

explain in a moment, and sympatric if it takes place in the same

location – also in a specific sense.

The big issue in speciation is not the potential for a group of

more or less identical, happily interbreeding organisms to diverge.

Well before Darwin, everyone knew that descendants are not

identical to their ancestors, and the breeding of domestic animals

showed that the same kinds of ancestor can give rise to very

different descendants. For instance, a breed of sheep with short

wool might occasionally have offspring with long wool, or wool of

a different colour. In this instance, human intervention can

persuade the sheep population to realise that potential, but the new

types of sheep are not new species, just new breeds. Nevertheless,

the potential to diverge must have been present. For true speciation

to occur, whether by human hand or by unaided nature, the

problem is to keep the new types separate. Otherwise they may

interbreed, and then they are likely to reconstitute the original

stock.

Somehow, the two diverging groups must be reproductively

isolated.

Traditional methods of animal breeding achieve this by direct

intervention: the breeders control which animals mate with which.

This is how breeds of pedigree dog are maintained, and one of the

reasons why they are so expensive. Distinct breeds of dog, left to

their own devices, would revert to a population of mongrels within

a few generations.

Allopatric speciation achieves the same result through some

form of geographical isolation (‘different homeland’). The idea is

that some natural feature, such as a river, a mountain range or a

land bridge, separates what was initially a single population into
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two distinct ones. Once separated, the two groups can change, and

they are likely to do so in different ways because they have ceased

to interact with each other. If this process continues for long

enough, it may become impossible for members of the two groups

to interbreed. At that point, the groups constitute distinct species.

Here’s a classic example. The Caribbean Sea just north of the

Isthmus of Panama, and the Pacific Ocean to its south, contain

many organisms that are closely related but constitute distinct

species. Working from the Scripps Institution of Oceanography in

San Diego, the marine biologist Nancy Knowlton has studied

snapping shrimp.3 Very similar species of shrimp – they look almost

identical – are found on both sides of the isthmus, but when

brought together they do not interbreed. Every single one of seven

distinct lineages of snapping shrimp has split into two species (in

three cases there is also a third subspecies): one branch lives in the

Caribbean, the other in the Pacific (see Figure 61).

It is straightforward to provide an evolutionary explanation, and

difficult to find anything else that makes sense of this remarkable

pattern. We know independently from geological evidence that
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in each pair lives either side of the Isthmus of Panama.
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three million years ago falling sea levels and rising land filled in the

gap between the two halves of the American continent, creating the

Isthmus of Panama and separating the Pacific Ocean from the

Caribbean and the rest of the Atlantic. Before the land bridge

formed, each lineage constituted a single species. Afterwards,

allopatric speciation caused each lineage to split into two (or more)

species, the ones we have today. For each lineage, the modern

species of snapping shrimp are descendants of the same ancient

species, which ‘drifted apart’ genetically once the two populations

were prevented from interbreeding by an impassable land barrier.

This evolutionary hypothesis makes a quantitative prediction. If

we can work out the time that has elapsed since the species began

to diverge, independently of the geology, we should obtain a result

of about three million years. The discovery of DNA has made such

estimates possible, because mutations occur at an approximately

constant rate.4 If the two times disagree, something is wrong. As it

happens, they do agree.5 So here we have a specific prediction made

by evolutionary theory and confirmed by experiment.

There are more ways to test the theory of evolution than

watching a cauliflower and insisting that it must change into a cat

before your very eyes.

............
The allopatric mechanism for speciation is simple and direct;

computer scientists would call it WYSIWYG – what you see is what

you get. To separate something into two parts when it wants to

stick together, drive a wedge through it. Perhaps for this reason,

most biologists believe that most speciation events have been

allopatric, and they have found examples everywhere – the African

and Indian elephant, squirrels on the two sides of the Grand

Canyon, the Faeroe Island house mouse . . .

As a mathematician, I tend to be suspicious of WYSIWYG

explanations. They put in what they want to get out, which smacks

of circular logic. The world is usually less direct. Sympatric

speciation is definitely less direct, but it is also more puzzling. For a

long time, it was thought to be exceedingly rare, if not impossible.

Initially there is a single species, a group of more or less identical

creatures (except for sex if the species is sexual). They are all able to

interbreed with one another, with fertile offspring. They are all
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conveniently located in the same place, so there is no lack of

opportunity to interbreed. Suppose that for some reason this single

group starts to split into two or more genetically different types.

Then there seem to be two immediate reasons why this split should

not develop into a lasting division into two distinct, non-

interbreeding groups, let alone two groups that cannot interbreed

with fertile offspring – two distinct species.

One reason is genetic. In the early stages of the split, the two

new types can interbreed and there is no geographical barrier to

stop them. Because the new types are small in number but the main

population is large, the mates of the new types will almost always

be members of the main population. But then, the new genes will

be overwhelmed by the existing ones. So as soon as a group begins

to acquire genetic differences, those changes will be snuffed out –

swamped by the main gene pool – and the result recreates the

genetic make-up of the original species.

This is the problem of ‘gene flow’. It presents a stabilising force

that mitigates against sympatric speciation.

Another objection is evolutionary. At least one of the new types

differs from the original population. In order for this new type to

evolve, creatures of that type must be fitter than the original

population. But if belonging to the new type makes some particular

creature fitter, then the same must apply to all the others. So why

don’t they all change in the same way, thereby sticking together as

a single species? The species might drift, as a whole, but it

shouldn’t split.

I’ve already explained why the concept of ‘fitness’ needs to be

treated with care, but the argument just outlined applies whatever

specific meaning is attached to that term. It seems watertight. So it

looks as though sympatric speciation is impossible. And that’s what

most biologists thought until the last decade or so. Then a series of

theoretical models and observations, mostly in laboratories but

occasionally in the wild, made some of them rethink the whole

question. And it has turned out that the arguments against

sympatric speciation are not as strong as they appeared to be.

Agreed, something has to stop gene flow from gluing the nascent

split back together before it has really got going. But geographic

isolation, as in the allopatric case, is not the only game in town. It

is not necessary for organisms to be physically prevented from

interbreeding. It is enough that, for some reason, they don’t.
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............
A case in point is the (I say ‘the’, but see how the story goes)

African elephant. When I was at school, we were taught that there

are two species of elephant, African and Indian. Almost all

taxonomists were happy with that, but for a century or so a few

mavericks kept wondering about the forest and savannah elephants

in Africa. No elephant can be called sylph-like, but forest elephants

are significantly slimmer than savannah ones, and there are other

differences in form and behaviour that suggested to these

taxonomists that there must actually be two species of African

elephant: forest and savannah. Nonsense, said the rest: the forests

are adjacent to the savannahs, so the elephants in the forest can

interbreed with those on the plains, and gene flow will do the rest.

They may be distinct subspecies, but they can’t be different species.

The argument raged for a century, all of it inconclusive. Then,

in 2001, Science reported that a DNA identification system, set up to

trace poached ivory, showed that African elephants consist of two

different species.6 The researchers were expecting slight variations

between the genetics of forest and savannah elephants, consistent

with their being subspecies, but the difference was much greater

than expected. The DNA evidence showed that the species diverged

about 2.5 million years ago. In fact, the genetic difference between

the African forest and savannah elephants is 58% of that between

either of them and the Indian elephant. So now most taxonomists

accept that there are two elephant species in Africa: the forest

elephant Loxodonta cyclotis and the savannah (or bush) elephant

L. africana.

Why doesn’t gene flow reunite the populations into a single

species, then? Although the forest is adjacent to the savannah, and

it is true that elephants from the forest can mate with those from

the plains, they seldom do. One reason is obvious: they don’t get

much opportunity. A female and a male must come together

accidentally at the forest edge, just when both are ready to mate –

which in elephants is a fairly small proportion of the time. Even if

they manage that, she has to fancy him, and often she doesn’t. So

although their geographical ranges overlap, or at least abut, gene

flow does not glue the two species back together.

Some taxonomists argue that the African elephant story is still

allopatric speciation: in effect, the edge of the forest acts as a

geographical boundary. But while they were arguing that there had
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to be just one species, thanks to gene flow disrupting sympatric

speciation, this ‘boundary’ never figured in their arguments. Yaneer

Bar-Yam has devised mathematical models based on genetic

diffusion which show that gene flow can be prevented without

having an impenetrable barrier.7 A sparsely spaced series of

obstacles is enough.

We don’t know exactly how the two species of African elephant

diverged. But if the distinction between allopatric and sympatric

speciation means anything (and those who believed sympatric

speciation to be impossible certainly thought it did), then the

African elephants diverged sympatrically. Whenever a species starts

to diverge, there will always be some sense in which one group is

different from the other, otherwise there is no divergence. That

difference may well affect the prospects of members of the two

groups mating: not whether they can do so, but how likely it is that

they will. On the other hand, whenever a species starts to diverge,

the creatures will initially be in much the same location. So seizing

upon some tiny difference and arguing that it constitutes allopatric

speciation is really just renaming sympatric speciation.

The divergence of species involves the fate of individuals and

their descendants, as well as family groups and the population as a

whole. You don’t just wake up one morning to find two neatly

separated groups of elephants, when the night before there was

only one. From Massimo Pigliucci we have learned that ‘species’ is

best seen as a particular scale of clustering in phenotypic space; in

the same way, ‘speciation’ is a divergence of clusters on a similar

scale. It starts with one cluster and ends with two, but could be

very complex and messy in between. Mathematical models suggest

that this may well be the case.

So sympatric and allopatric speciation are convenient broad

categories, not mutually exclusive alternatives. As such they are

useful because they capture a key difference: how the animals do or

do not interact during the speciation process. Are they all in one

place, or not? And the current view is that they may well be in the

same place, so the speciation can be sympatric, while a host of

influences can disrupt gene flow and allow the genetic and

phenotypic split to grow. As the American geneticist and

complexity scientist Stuart Kauffman put it at a conference in

Sweden some years ago: the key step to speciation is getting a foot
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in the door. If that’s possible, then the door can be kept open, and

maybe widened.

............
Darwin’s discussion of evolution is purely verbal, aside from one

quasi-mathematical diagram, a tree-like figure showing how

repeated small-scale branchings can combine to give large-scale

divergence. But because evolution is a complex and sophisticated

process, words alone are no longer adequate to describe it or debate

it. Increasingly, the subject is being studied using mathematical

models. The advantage of such models is that they make the

assumptions involved clear. The disadvantage is that no model can

capture the full complexity and vast scale of evolution, which has

been going on in parallel across the entire planet for nearly four

billion years.

Traditionally, biologists used that complexity as a reason to

ignore mathematics and fall back on words. But verbal descriptions

are even less able to capture the complexity of evolution than are

mathematical models. Worse, they are imprecise and open to

misunderstandings and ambiguities. The models clarify the

concepts, the assumptions and the relations between them. That is

what models are for. A model that describes every detail exactly

would be like a map of the world that is the same size as the world.

The argument against the possibility of sympatric speciation has

flaws other than the ones we’ve just encountered. In particular, one

of the basic assumptions involved turns out to be wrong. This can

be established by setting up specific mathematical models of

sympatric speciation and investigating their implications; this has

been done, and from several points of view.

A typical example is a paper written by the California-based

scientists Alexey and Fyodor Kondrashov and published in the

journal Nature in 1999, about a scenario that facilitates sympatric

speciation.8 They begin by observing that speciation models in

which there is a mutation in only one gene (more properly, in only

one genetic locus, a place in the genome where the gene resides)

‘have very peculiar properties’ because they are too simple to be

realistic. It is therefore important to consider mutations that

happen at similar times in two or more genetic loci, in what are

known as multi-locus models. One scenario that leads rather
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directly to speciation arises when one gene confers a new character,

and the other encourages mating patterns in which that character

reinforces its own occurrence by a process known as assortative

mating. For example, we saw in Chapter 7 that a single mutation in

lacewings can change their colour from light green to dark green.

The effect of predation now leads to more of the dark green insects

being found in one type of environment: conifers, with dark green

foliage. On light green grass, there will be more light green

lacewings.

This is not yet speciation, because interbreeding between light

and dark varieties remains possible and gene flow can remove the

mutant. But suppose there is now a second mutation, causing light

green females to prefer light green males, and ditto for dark green.

Now, although the two varieties could interbreed, they don’t. This

sets the stage for further mutations, which now occur

independently in the two varieties, causing them to drift further

apart genetically. Eventually, even if they do happen to interbreed,

the resulting hybrids may not be viable. Now the species have

separated.

This example is somewhat artificial, because the new character

does two things at once: it makes the lacewing fitter when it is in a

particular environment, and it is also the character that females

prefer. The Kondrashovs analysed a more realistic model in which

one character affected the organism’s fitness, but a different one

affected mate choice. They showed that, again, there are

circumstances in which the result can be sympatric speciation.

Their model was a probabilistic one, analysing how the probabilities

of particular mutations affected the frequencies of the

corresponding phenotypes.

In the same issue of Nature, Ulf Dieckmann (International

Institute for Applied Systems Analysis, Austria) and Michael Doebeli

(University of British Columbia) found a different combination of

genetic changes that can cause sympatric speciation.9 Again, one of

the characters involved was something affecting the fitness of the

organism in a given environment, but this time the other was not a

mating preference as such, but an ‘ecological’ character – one that

affects the probability of mating occurring indirectly, according to

the environment. In the case of the lacewings, the female need not

possess a specific genetic preference, for instance: instead, the

opportunities for mating arise when both males and females have
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the same colour. The light green ones are more common on grass,

so light green females encounter more light green males; similarly

for dark green insects on conifers. So this time it’s not whom you

prefer, but whom you commonly meet, that matters.

The end result is identical: assortative mating can occur,

opening the door to sympatric speciation.

Dieckmann and Doebeli’s mathematical model is different: it

belongs to a class of models known as adaptive dynamics, and uses

a differential equation rather than probabilities. That is, we write

down equations that govern the rate of change of the sizes of the

original population and the mutant population, and then work out

the dynamics of the resulting system. Figure 62 shows a typical

instance of speciation in a numerical simulation of this model.

............
There is also a more general way to spot the flaw in the argument

that sympatric speciation is impossible: to view speciation as an

example of symmetry breaking. We met this idea in the previous

Profile Books - Maths of Life Data Standards Ltd, Frome, Somerset – 10/2/2011 01 Maths of life Chapters.3d Page 236 of 336

Fig 62 How a single species branches into two in the Dieckmann–Doebeli model.

The three sets of curves are fitness functions. The scales are in arbitrary

units used in the simulation.
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chapter, in connection with the markings on animals. What has

symmetry breaking to do with speciation? Are species symmetric?

Well . . . yes. But not in the way that stripes on a tiger are

symmetric.

The same mathematical concept can be realised in many

different ways. The interpretation of the symmetries is very

different in the applications to markings and speciation. For

markings, the relevant symmetries are rigid motions; for speciation

the symmetries ‘shuffle’ the organisms like a pack of cards. Only in

the abstract do the two applications share the same underlying

mathematics. This, in fact, is where mathematics gets much of its

power: by using the same idea in different contexts.

We saw that a symmetry is a transformation that preserves

structure. Here, the transformations are permutations – shufflings of

labels employed in the model to identify the individual organisms.

If ten identical finches are conceptually labelled 1–10 in some

order, then the mathematical model of their interactions should

not depend on the choice of labelling. All possible permutations of

the numbers 1–10 should lead to the same model – a severe

constraint on its mathematical form. On the other hand, if five

finches with small beaks are labelled 1–5, while another five with

big beaks are labelled 6–10, then the mathematical description

should permit relabelling within each group. But it should not, for

example, allow label 5 to be swapped for label 6.

From this point of view, sympatric speciation is a form of

symmetry breaking. If a population of nominally identical birds

evolves into two distinct groups, then the resulting system has lost

some of its symmetry (such as the transformation that swaps labels

5 and 6). For several decades, mathematicians and physicists have

been developing a general theory of symmetry breaking, and it is

now being applied to models of speciation. One of its most striking

features is that there are many ‘universal’ phenomena that do not

depend on specific details of the models, only on what the

symmetries are and which of them is being broken. This theory can

be applied to idealised models of speciation, where it leads to at

least three universal phenomena.

The first is that when a population first speciates, it usually

splits into precisely two distinguishable types (Figure 63, see over).

Splitting into three or more types is rare, and a mainly transitory

phenomenon. The second is that the split occurs very rapidly –
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much faster than the usual speed of phenotypic change in the

population. The third is that the two clumps will evolve in opposite

directions: if one clump evolves larger beaks, then the other clump

will evolve smaller beaks.

The symmetry-breaking models indicate that a key step in

sympatric speciation is the onset of instability – exactly as in the

game-theoretic models discussed earlier. As the environment or

population size changes, the single-species state may cease to be

stable, so that small, random disturbances can cause big changes.

Like a stick being bent by stronger and stronger forces, something

suddenly gives and the stick snaps in two. Why? Because the two-

part state is stable, whereas one overstressed stick is not.

A population of organisms is stable if small changes in form or

behaviour tend to be damped out; it is unstable if they grow

explosively. Theory shows that gradual changes in environment or

population pressure can suddenly trigger a change from a stable

state to an unstable one.

There are two main forces that act on populations. Gene flow

from interbreeding tends to keep them together as a single species.

Natural selection, in contrast, is double-edged. Sometimes it keeps

the species together, because collectively they adapt better to their

environment if they all use the same strategy. But sometimes it

levers them apart, because several distinct survival strategies can

exploit the environment more effectively than one. In the second

case, the fate of the organisms depends on which force wins. If
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Fig 63 Simulation of sympatric speciation in a model with 50 clumps of

organisms. Time runs horizontally, phenotype vertically. As time passes, a

single species splits into two.
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gene flow wins, we get one species. If natural selection against a

uniform strategy wins, we get two. A changing environment can

change the balance of these forces, with dramatic results.

Specific mathematical models, such as those built by the

Kondrashovs or Dieckmann and Doebeli, support this scenario.

They provide a variety of biological mechanisms that can make the

single-species state unstable and cause the symmetry to break.

Intuitively, we can understand the common features of such models

in simple biological terms, and suggest a genetic interpretation.

Imagine, for example, a species of finches with medium-sized

beaks, all feeding on seeds from the same plant. Nominally they are

all identical – that is, any differences are superficial and do not

really alter the behaviour of the group. Their population expands

until it is limited by the supply of those particular seeds.

Within this species, there will be a range of genetic variation,

say in beak size. If the size preferred by natural selection is in the

middle range, then gene flow beats environmental disruption, and

the finches remain one species. The population size is well adapted

to the food supply, so nothing much changes. But now suppose

that a change of climate, say, reduces the food supply. Now there

are advantages in having beaks that are not medium-sized, more

suited to other types of seed.

A species can be thought of as a cluster in phenotypic space, so

it is spread out, and not just a single point. So some birds will have

slightly larger beaks than average, and others slightly smaller beaks.

This is unavoidable: the average is in the middle. Birds with slightly

larger beaks can feed on larger seeds. They then cease to be

competition for the birds that have slightly smaller beaks. Once the

balance swings in favour of avoiding the middle ground, the

collective dynamics rapidly drives the birds into two distinct types.

These types do not compete directly for food: instead, they avoid

competition by exploiting seeds of different sizes.

As Kauffman said, once diversity has its toe in the evolutionary

doorway there are many ways to amplify the split. The most

obvious factor of this kind is one we have already met: assortative

mating. Organisms in a given group share similar habits, eat similar

food, and therefore meet up more often than they do with

members of the other group. So the big puzzle is the initial split –

which need not be especially large or dramatic. At a later date

either of these clumps may split again, as continuing changes to the
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environment change the availability of resources. A cascade of such

splittings leads to what biologists call ‘adaptive radiation’, where

many new species arise from one ancestral species over a relatively

short period.

At the moment, this kind of modelling is in its infancy. Its main

contribution is to show that sympatric speciation is reasonable and

natural, and to focus attention on the role of instability as a

mechanism for species diversification. With more biological realism,

the nature of these instabilities can be better understood.

In the meantime, the symmetry-breaking approach puts

speciation in a new light. A stick breaks because the large-scale

forces that act on it are inconsistent with its structural integrity.

Precisely how it breaks depends on very fine detail about which fibre

gives way first and how the consequences cascade – but if it didn’t

happen one way, it would have to happen some other way.

Whatever the details, the stick will break. Similarly, species diverge

because of an unavoidable loss of stability. The actual sequence of

events – which gene does what, and in what order – is less

important than the context in which these events occur. An

overstressed stick must break. An overstressed group of organisms

must either die, or speciate.

Is there any evidence for this type of scenario? Not directly,

because the timescale for the evolution of new species is too great.

But there do seem to be relics of past speciation events that match

the symmetry-breaking scenario very closely. A particularly

informative and historically important case, which displays features

consistent with various mathematical models of sympatric

speciation, concerns what we now call Darwin’s finches, in the

Galápagos Islands.

............
The Galápagos Islands form an archipelago, a group of islands, in

the Pacific Ocean. They are situated at the equator, 1,000 kilometres

west of the coast of Ecuador. The name comes from the Spanish

word for ‘tortoise’, reflecting the presence of the celebrated giant

tortoises. There were a quarter of a million of them when the

islands were discovered in 1535; today they number around 15,000.

The archipelago contains about ten large islands and dozens of

smaller ones, all of volcanic origin.
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The geology of the Galápagos Islands is unusual, and it has had

a profound effect on the creatures that live there. For hundreds of

millions of years the islands have followed a remarkable cycle: they

rise from the ocean floor at the western edge of the archipelago,

move slowly eastwards, sink beneath the waves, and eventually

disappear beneath the western edge of Central America. So at any

given moment, the oldest and most eroded islands are to be found

in the eastern part of the archipelago, while the newest and most

volcanically active are to the west.

Today we are used to the idea that continents can move, but

fifty years ago it was controversial, and sixty years ago it was

considered crazy. In 1912 the Berlin meteorologist Alfred Wegener

took seriously a similarity that hundreds of people must have

noticed: the east coast of South America and the west coast of

Africa fit together like adjacent pieces of a jigsaw puzzle. He argued

that this was evidence for ‘continental drift’. On geological

timescales, the continents are not fixed; instead, they move, very

slowly, over the surface of the planet.

The applied mathematician Harold Jeffreys objected that no

physical mechanism can exert the gigantic forces required to make

continents plough through the ocean floor. This was entirely

correct; nevertheless, by the 1960s it became clear that Wegener

was right. The ocean floor moves along with the continents, like a

giant conveyor belt. New floor forms along mid-ocean ridges as

magma wells up from the Earth’s mantle, cools and spreads

sideways; old floor is ‘subducted’, sliding back down into the

mantle at the edges of continents. Indeed, it is sometimes pulled

down. As a result, the surface of the Earth is divided into eight

major ‘tectonic plates’ and many smaller ones. These plates are

effectively rigid, yet they can move in complex ways, driven by

huge convection currents in the molten rock of the Earth’s mantle.

They interact along their common boundaries.

The Galápagos Islands are poised at the junction of three plates:

the Cocos, Nazca and Pacific plates. This meeting point, known as

the Galápagos Triple Junction, is geologically unusual because the

plates do not meet in a simple Y shape. Instead, two much smaller

‘microplates’ seem to be trapped at the junction, and they spin in

synchrony with each other like two adjacent gearwheels. The

Canadian geologist J. Tuzo Wilson explained this curious behaviour

in 1963, suggesting that beneath the islands there is a geological
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‘hot spot’ where a huge plume of molten magma rises up through

the mantle, breaks through the ocean crust and forms volcanic

cones. A similar hot spot is thought to create the Hawaiian island

chain, but those do not lie on a plate boundary. For at least 20

million years, the Galápagos hot spot has remained in much the

same place, though it has wobbled a little; the ocean floor has

drifted eastward across it, carried by the movement of the tectonic

plates. Currently the Nazca plate is moving at a speed of 60

kilometres every million years, while the Cocos plate moves 80

kilometres every million years. These speeds might seem too small

to matter, but continental drift would carry a Galápagos island to

the mainland of South America in a mere 12 million years, very

short by geological standards.

The Hawaiian islands seem to have formed one at a time, each

volcano becoming dormant as it is carried away from the hot spot,

but the Galápagos Islands are more complicated. Nearly all of them

have been volcanically active in the last few hundred years, which

geologically is a mere instant, and their periods of formation have

overlapped substantially. Today the newest island in the

archipelago is Fernandina, which is an active volcano.

............
As a consequence of their isolation and continual tectonic turnover,

the Galápagos Islands are a bit like the well-known axe, the exact

same axe that my father gave me, though it has had three new

heads and four new handles. This rapid turnover of land has made

the flora and fauna of the Galápagos unlike any elsewhere on the

planet. Darwin spent five weeks in the Galápagos. Walking over

jagged fields of coal-black lava, he was struck by the realisation that

this was new land, and that its outlandish creatures must be new

arrivals. Much later, what he found there started to sink in, and it

had a big effect on him. None of this (aside from a few general

remarks from the second edition onwards) appears in the Origin, but

his letters and notebooks show how important the Galápagos

Islands were to his thinking.

Darwin was an obsessive collector, and he brought back a

collection of dead birds from the Galápagos. He thought they were

varieties of blackbirds, finches and ‘gross-beaks’. The ornithologist

John Gould looked at the specimens and told Darwin that they
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were all finches – a dozen or so distinct species. They differed in

body size, in colouring and, especially, in the shapes and sizes of

their beaks. The differences were not huge, but enough to indicate

distinct species. Today they are known collectively as Darwin’s

finches, a name dating from 1936, and we recognise 13 species in

the Galápagos10 plus another on the Cocos Islands.

In The Voyage of the Beagle, based on his diary, Darwin wrote:

The remaining land-birds form a most singular group of finches,

related to each other in the structure of their beaks, short tails,

form of body, and plumage: there are thirteen species, which

Mr. Gould has divided into four sub-groups. All these species are

peculiar to this archipelago; and so is the whole group, with the

exception of one species . . . The males of all, or certainly of the

greater number, are jet black; and the females (with perhaps one

or two exceptions) are brown. The most curious fact is the

perfect gradation in the size of the beaks in the different species

of Geospiza, from one as large as that of a hawfinch to that of a

chaffinch, and . . . even to that of a warbler . . . Seeing this

gradation and diversity of structure in one small, intimately

related group of birds, one might really fancy that from an

original paucity of birds in this archipelago, one species had

been taken and modified for different ends.

Because Darwin uncharacteristically omitted to record on which

island he collected which specimen, he missed a smoking gun for

natural selection: the finch species are often different on different

islands. But we now know that Darwin’s intuition was correct. The

closely related genetics of Darwin’s finches show that they diverged

from a single ancestral group about five million years ago. (Perhaps

a few founders were blown to the islands from the Central

American mainland by a storm, but that’s conjectural.)

The first systematic study of the genetics and behaviour of

Darwin’s finches was made by David Lack. Working as a

schoolmaster in Devon and later as field ornithologist at Oxford, he

wrote two books with the title Darwin’s Finches: a scholarly one in

1945, and a more popular account in 1961.11 Lack visited the

Galápagos in 1938, and among other things, he measured the sizes

of various birds’ beaks. In his first book he suggested that the

differences in size were recognition signals – birds could distinguish

their own species by looking at the beaks. So he viewed beak sizes

as an isolating mechanism, something that prevented gene flow
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even when it would otherwise be possible. But by 1961 Lack had

revised his opinion, and now saw the differences in size as

evolutionary adaptations to different food sources. Later studies

confirm that view.

Lack’s work has been continued by Peter and Rosemary Grant,

husband and wife, both emeritus professors at Princeton. Since

1973 they have spent half of every year on the tiny Galápagos

island of Daphne Major, capturing and releasing the birds, tagging

them, measuring their sizes and shapes, and taking blood samples.

Through their efforts we now know a great deal about Darwin’s

finches, their behaviour, form and genetics.

............
One of the main implications of the symmetry-breaking model of

sympatric speciation is striking: the two new phenotypes move

away from the old one in opposite directions.12 If, for example, a

finch species with medium-sized beaks splits into two distinct

species distinguished by beak size, then one will have bigger beaks

and the other smaller beaks.

No such splitting has been observed directly, but that is to be

expected because the evolutionary timescale is so long. Instead, we

might hope to find modern traces of the evolutionary process.

Fossil Darwin’s finches would be lovely, but the Galápagos Islands

are volcanic, and fossils hardly ever form in volcanic strata.

However, there is another type of ‘fossil’ – the modern species

themselves. These display a phenomenon known as character

displacement: the phenotypes of distinct species change if both

those species are present in a given environment. With a bit of

imagination, you can view these changes as a kind of modern

reconstruction of the likely evolution of the two species.

The species concerned are the medium ground finch Geospiza

fortis and the small ground finch G. fuliginosa, henceforth Medium

and Small. The character concerned is beak depth, the width of the

beak at its base. Medium is found on the island of Los Hermanos

(Crossman), but Small is not. Conversely, Small is found on Daphne,

but Medium is not. However, both species coexist on Isabela

(Albemarle).

When only one species is present, the beak depth is the same

for either of them: the mean beak depth for Medium is very close to
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10 mm on Los Hermanos, and the same holds for Small on Daphne.

But when they coexist, they force each other apart: the mean beak

depth for Medium on Isabela is very close to 12mm, but that for

Small is 8mm. The average of 8 and 12 is 10: neatly consistent with

the prediction made by the symmetry-breaking model of sympatric

speciation. It is also worth noting that the other kinds of model

used by the Kondrashovs and by Dieckmann and Doebeli also

possess this ‘constant mean’ property.

This is character displacement, not speciation as such. But it can

be argued that when the two species are placed in the same

environment, we are reconstructing the original evolutionary

competition . . . and finding out what the result was. I don’t claim

that this observation is anything more significant than a straw in

the wind, and grasping at straws is not always to be recommended.

But it’s intriguing to encounter exactly the predicted behaviour in

the most famous example of speciation that there is – and the one

that Darwin nearly missed.
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15 Networking Opportunities
.................................

As we’ve seen when looking at the brain in Chapter 11, networks

are hot property in biology and mathematics. They are hot property

in physics and engineering too, and a popular buzzword in the

business world. If you work in science or in commerce, it is very

difficult not to run into networks. A ubiquitous example is the

Internet, which by definition is a network of intercommunicating

computers.

Networks abound in biology. We’ve already seen how the ability

of nerve cells to network allows relatively simple components to

produce rich and subtle types of behaviour. Indeed, if the

‘connectionist’ view of the human mind is anywhere near the

truth, our ability to behave intelligently, our conscious awareness

and our feeling (rightly or wrongly) that we have free will are all

consequences of two things: the brain’s intricate network of

neurons, and its interactions with the body that contains it and

with the external world.

In the case of the human nervous system, the network is a

physical thing. Nerve cells are linked together by axons and

dendrites, the body’s hidden wiring. In most biological networks

this linkage is more metaphorical. Ecologists study food webs in an

ecosystem: which organisms feed on which. A food web is a

network in which real organisms are ‘linked’ conceptually by the

relationship of eating one another. Disease transmission can be

thought of as a network in which individual people are linked by

infection. A species can be thought of as a network of organisms,

linked by everyday interactions such as competition for food or

mates, and social behaviour.
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Some of the most important but least understood networks arise

at the molecular level. We now know that biological development,

in which a fertilised egg turns into an organism, is not just a matter

of reading off information from DNA. Some parts of the genome,

genes in the strict sense, provide instructions for making proteins.

More precisely, they encode the order in which the constituent

amino acids must be assembled: DNA doesn’t perform the assembly.

However, an organism is not just a bag of proteins: the right

protein has to end up in the right place, and the entire system has

to function as a living creature. One way to get protein to the right

place is to make it there, and this involves switching the activity of

a gene on or off depending on which cell it is in and where that

cell is currently located in the organism. This switching is itself

controlled, in part, by other genes, whose activity may be regulated

by yet other genes. Collections of genes combine together to form

genetic regulatory networks, and our understanding of how DNA

affects development, and the day-to-day running of the body for

that matter, depends on sorting out what these regulatory networks

do and how they do it (see Figure 64).

............
Social networking has become fashionable among humans, thanks

to sites such as Facebook and Twitter. A real network, the Internet,

helps us set up and maintain these social connections, but the
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social network is metaphorical. We were anticipated, millions of

years ago, by an organism whose natural social behaviour

sometimes creates real networks.

You wouldn’t sign a contract with Physarum polycephalum for

designing a railway system. For a start, it can’t read or write: it is a

species of slime mould. Its name means ‘many-headed slime’, and

that’s what it’s often called. It can’t compete in the intelligence

stakes with humans, dolphins, octopuses or even mantis shrimp.

There is dumb, there is dumber . . . and there is slime mould.

However, this slime mould can indeed design railway systems. It

does need a bit of prompting, but it does a pretty good job. In fact,

as Atsushi Tero at Hokkaido University in Japan and a team of eight

other researchers discovered early in 2010, P. polycephalum comes

up with almost the same design for the Tokyo rail system that the

engineers did.1 And all they ‘told’ the slime mould was where the

main cities are; the mould did the rest.

A few other scientists have persuaded slime moulds to solve

other kinds of networking problems, such as finding their way

through mazes. In principle, you could build a slime mould

computer and do word processing on it, though it might take half

the age of the universe to get as far as the first sentence. The slime

mould’s talents are not really suited to processing digital

information at high speed. But when it comes to networks, slime

mould is in its element.

Using slime mould to design a railway system is not as crazy as

it sounds, because there are environmental conditions that cause

slime moulds to structure their colony into a network of vein-like

tubes, and to transport vital fluids along those tubes. A train system

transports people along railway lines – it’s actually a very similar

problem. As well as using the slime mould to solve a problem about

networks, the Japanese team used the mathematics of networks to

find out how the slime mould did it, neatly closing the conceptual

circle. The result might even be useful for human designers; not by

using the slime mould to solve real design problems, but to

simulate its strategies on a powerful computer.

P. polycephalum is a single-celled organism, a bit like an amoeba,

except that this cell contains a large number of nuclei. Like an

amoeba it can extend protuberances, which it uses to explore its

surroundings – in effect, to go hunting for food. It spreads over

dead logs or rotting leaves in a slimy yellow carpet, and the
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hunting goes on along the edge of the carpet, where individual

‘plasmodia’, regions that contain a single nucleus, seek food. Inside

this exploratory boundary the organism forms itself into a network

of tubes, reminiscent of the veins on the back of the human hand;

just like veins, these tubes carry fluid, but the fluid is the

protoplasm that makes up the interior of the cell. The protoplasm

carries particles of food and other vital molecules as it flows,

distributing the bounty to the entire organism.

Bizarre as this lifestyle may seem, it’s an effective way to make a

living, and slime moulds are very common. If you want to harness

the networking abilities of slime mould, you have to present your

computation to them in a form that appeals. And what appeals to a

slime mould is food.

In its experiments, the Japanese team placed food sources on a

flat surface at locations corresponding to the 36 main cities in the

region. Think of it as a map of the area around Tokyo, with blobs of

food for cities, but with no connecting roads or railways marked,

because those would prejudice the procedure. Then they set their

slime mould loose, by introducing a plasmodium at Tokyo and

allowing it to go hunting.

To begin with, the plasmodium didn’t have a clue where the

food was, so it spread all over the map, forming a flattish layer. But

as time passed, the layer contracted to form a network of tubes,

linking the food sources. To avoid biasing the results by starting

from Tokyo, the researchers performed another experiment, but this

time they started with the mould spread all over the map. The

results were very similar. To make sure that the mould formed a

network, rather than just remaining spread out, they allowed any

excess to spill over onto a large food source outside the area of the

map.

The resulting network was very like the actual rail network

connecting these cities (Figure 65, see over). The resemblance got

better when the slime mould was deterred from entering what in

the real world were mountainous regions by a light being shone on

the corresponding bits of the map (P. polycephalum tends to avoid

light). In effect, the researchers used light intensity to simulate

terrain. With or without this extra tweak, the slime’s network and

the real one performed very similarly, according to a number of

different measures of efficiency, such as the ratio of benefits to

costs.
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This behaviour is not entirely surprising, but there is a sign that

something interesting is going on. The slime mould does not

simply ‘triangulate’ the entire region by forming tubes between all

neighbouring cities. Neither does the rail network. Both leave out

potential links – and both leave out much the same links.

Is this similarity between the two networks a superficial accident,

or a sign of shared origins? It’s a bit of both. It might seem that the

Tokyo network was ‘designed’, while the slime mould one evolved.

Engineers worked out where to run the railway lines; the slime

mould modified its network by expanding some tubes and

contracting or eliminating others. But the real rail network also

evolved: as cities appeared and grew, the rail system grew with it,

adding new links. As the numbers of passengers increased, more lines

and more trains were constructed, ‘strengthening’ the links in the

network. Services that did not attract customers were abandoned.

If the engineers had been starting from scratch, with all cities in

place but no rail network, they could have adopted a more rational

and more global approach, designing the entire network to optimise

whatever quantities seemed appropriate, such as transporting the

required number of people cheaply and quickly. The slime mould

could not have taken this approach. However, the engineers might

still learn some useful tricks from the slime mould, as the Japanese

team discovered when they devised a mathematical model of what

the slime mould was actually doing.
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Their model starts with a very fine random mesh of thin tubes,

resembling the initial layer where the slime mould spreads all over

the map. They wrote down simple equations for the amount of

fluid that could be pumped through each tube, based on standard

ideas from fluid dynamics. Their equations state that the amount of

fluid flowing through a tube is proportional to the difference in

pressure between its two ends, to its ‘conductivity’ (a measure of

how big the tube is, proportional to the fourth power of its radius)

and inversely proportional to the length.

To modify the sizes of the tubes, choose two random cities.

Pump in extra fluid at one of them and extract it at the other, so

that the total amount of fluid stays unchanged. Calculate the

amount of fluid passing along each tube, using the equations. Make

small changes in the diameters of the tubes, so that the ones

carrying large amounts of fluid get bigger, and the ones carrying

small amounts of fluid get smaller. Work out whether the change

improves the efficiency of the network. If so, keep it; if not, try

another random change. The exact method for doing this allows

tubes to contract completely, attaining zero diameter: when that

happens, they disappear from the network. Repeat this procedure

over and over again, with new random choices of the two cities,

and keep going until the structure settles down to something that

hardly changes from one stage to the next.

Efficiency can be measured in many different ways: how much

material can be transported, how rapidly it can be transported, how

much benefit is gained for given cost. This evolutionary process can

be deliberately tweaked to enhance any desired measure of

efficiency: it is just a matter of selecting appropriate rules for how

fast the tubes change in response to the quantity of fluid they are

transporting. The team found that one tweak of this kind led to a

network that in some ways outperformed both slime mould and the

actual Tokyo rail system: it had the same transport efficiency but a

better benefit-to-cost ratio. However, this network was more fragile:

its ability to transport fluid (or people) declined significantly if parts

of it were damaged or removed, whereas the slime mould network

and the rail system are more robust.

There are other mathematical techniques for linking cities in a

network, and the team compared their results with these as well. In

cost terms alone, the most efficient network is a ‘Steiner spanning

tree’, which has branches but no closed loops; in such an
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arrangement, whenever a branch splits at a Y-shaped junction, the

angles in the Y are all 1208. This is the network that uses the

shortest length of rail. But it is not a terribly good way to transport

people, or slime mould protoplasm, because the link between two

nodes can go all round the houses – from a distant city into the

centre of Tokyo and out again, for instance. So travel time can be

unnecessarily large. Neither the rail network nor the slime mould

one looks remotely like a Steiner spanning tree.

Tero and his colleagues sum up their results like this:

Our biologically inspired mathematical model can capture the

basic dynamics of network adaptability through iteration of

local rules and produces solutions with properties comparable to

or better than those of real-world infrastructure networks.

Furthermore, the model has a number of tunable parameters

that allow adjustment of the benefit/cost ratio to increase

specific features, such as fault tolerance or transport efficiency,

while keeping costs low. Such a model may provide a useful

starting point to improve routing protocols and topology

control for self-organized networks such as remote sensor arrays,

mobile ad hoc networks, or wireless mesh networks.

............
Networks entered mathematics through a puzzle. In 1735 the prolific

Leonhard Euler turned his mind to a topic of conversation among

the good folk of Königsberg, then a city in Prussia, now Kaliningrad

in Russia. The city was located on both banks of the River Pregel,

and boasted seven bridges. These linked two islands to the banks,

and to each other (see Figure 66). The burning issue was this: is it

possible to take a walk that crosses each bridge exactly once?
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Euler didn’t find a solution. He did something more difficult –

he proved that no solution exists. His insight was to strip the

problem down to its essentials. All that matters is how the land

masses are connected. Their size and shape are irrelevant; worse,

they get in the way of thinking about the problem. His actual

argument was algebraic, assigning symbols to the land masses and

the bridges, but soon afterwards it was reinterpreted graphically, a

much more vivid way to represent the problem. This reduces the

puzzle to a diagram in which dots are joined by lines, which I’ve

superimposed on the map on the right of Figure 66.

In this diagram, each land mass – north bank, south bank and

the two islands – corresponds to a dot, and we join two dots by a

line whenever a bridge links the corresponding land masses.

Altogether, we get four dots and seven lines. The puzzle now

translates into a simple question: is there a path that includes each

line exactly once? Euler discussed open paths, which start and end

at different dots, and closed paths, which start and end in the same

place. He proved that neither kind of path exists for the Königsberg

bridge diagram. More generally, he characterised diagrams for

which such paths do or do not exist.2

This kind of diagram was originally called a ‘graph’, but

nowadays an increasingly common alternative is the more evocative

and less ambiguous network. Euler’s simple theorem about a puzzle

was the first evidence for a broad principle: the architecture (or

topology) of a network has a huge influence on what it can do.

Mathematically, a network consists of nodes (dots, vertices)

linked together by edges (lines, links, connections, arrows). The

nodes represent some kind of component, or agent, and two nodes

are joined by an edge if and only if they interact. Edges may be

bidirectional (interactions go both ways) or unidirectional (A

influences B but not the other way round). The unidirectional case

yields a directed network, whose edges are usually drawn as arrows.

The edges may carry ‘weights’ to indicate the strength of the

interaction. They may be of different kinds (fox predating on rabbit

is different from rabbit predating on vegetation) or they may be

nominally identical (fox A predating on rabbit X is near enough the

same as fox B predating on rabbit Y).

Two graphs have the same architecture (or topology) if one

graph can be obtained by rearranging the positions of the other

one’s nodes and edges, while maintaining the same connections
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and arrow directions (and any additional decoration such as

weights or types of edge). Important architectures include chains,

rings, complete graphs and random graphs, as shown in Figure 67.

We can investigate networks in the abstract, in concrete

mathematical models where the nodes and edges have additional

structure, and in real networks with real agents and interactions.

These three contexts are closely associated, but it is important to

bear in mind that they are different. As long as we do that, we can

safely employ the same words in all contexts – for example, talking

of a rabbit as a node in a food web and drawing it as a dot.

Different people use networks for different purposes and ask

different questions. An early pioneer was Stuart Kauffman, who

employed binary switching circuits (each node can be either on or

off) to model gene interactions in a cell. He found that the

dynamics of the network depended critically on the average

number of edges linked to each node. Innumerable types of

network have been studied: discrete (cellular automata), continuous

(differential equations), probabilistic (Markov chains), fractal

(iterated function schemes). Many complex systems are networks. A

radically new network architecture that has attracted attention is

the small world: a regular network with near-neighbour connections,

in which some edges are randomly rewired to become long-range

connections, or some nodes become ‘hubs’ that are connected to

unusually many other nodes.

There are several general theories of network structure and

behaviour. Intensive work on statistical properties of random

networks shows that as the probability of including any given edge

increases, there is a transition at which most of the nodes suddenly

link up into a single giant component. This result, metaphorically

at least, has an application to epidemics. Here the nodes are people

and edges indicate infection. The existence of a giant component

shows that if the probability of disease transmission becomes

sufficiently great, almost everyone will be exposed. Less obviously,
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it implies that there is a sharp threshold, below which the infection

remains in numerous small ‘pools’ isolated from one another, and

above which nearly everyone is exposed.

Another approach, introduced by the Japanese physicist Yoshiki

Kuramoto, analyses network dynamics in which the effect of each

node on those to which it is linked is small.3 Think of an epidemic

that is rarely infectious, for example. With these assumptions,

useful quantitative predictions can be made about the behaviour of

the network and its stability. More recently, theories have been

devised to incorporate stronger connections and more exotic

behaviour, including dynamical chaos.

............
In 1996 Joanne Collier, Nicholas Monk, Philip Maini and Julian

Lewis, a group of mathematical biologists at Oxford University,

used a mathematical model to investigate a mysterious patterning

process that had been observed in insects, nematode worms,

chickens and frogs.4 Cells can differentiate under the influence of

suitable control genes and signals; that is, cells that originally have

the potential to change into several different cell types choose one

type and change into that. It is as if the genetic signals determine

the cell’s fate, and indeed this is the term that biologists often use.

In some developing tissues, a mass of identical cells somehow

differentiates into many types. Some apparently random collection

of cells ends up with one fate, while the cells next to them have a

different fate. The resulting cell types (there may be more than two)

are intimately mixed.

The mechanism behind this process appears to have evolved

early on, and is highly conserved: despite the effects of natural

selection, it has not greatly changed over many hundreds of

millions of years. This implies that it must have had been so

biologically significant that any mutations in the associated DNA

code were weeded out, so it is actually conserved because of natural

selection.

At first sight this intimate mixture of fates seems puzzling, but

there is a relatively easy way to achieve it: instruct each cell ‘Be

different from your neighbours’. This mechanism is known as

lateral inhibition. An example is the nervous system. Since nerve

cells form networks with long thin connections, and their ability to
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function depends on this geometry, it’s not a good idea for the near

neighbours of nerve cells to also become nerve cells. Experiments

support the notion that when a cell develops into a nerve cell, it

sends signals to nearby cells telling them not to do the same.

You can sometimes spot the genes responsible: if they

experience a mutation, the process goes wrong and the mixed

pattern fails to develop. Such observations have been recorded in

the geneticists’ favourite organism, the fruit fly Drosophila. But even

if the gene responsible for lateral inhibition is known, one further

puzzle remains: which cell initiates the process. In order to inhibit a

neighbour, a cell must already be actively differentiating. Is the

starting point also determined by some gene, or can lateral

inhibition alone produce the required mixture of cell types? This is

the problem that the four mathematical biologists tackled.

Experiments show that the main gene responsible for lateral

inhibition is one known as Notch, and it acts in concert with

another gene, Delta, that triggers the formation of neurons. Both of

them generate molecular signals, in the form of proteins, that can

pass from cell to cell. So the mathematical model needs to take

account of these genes and how they interact and are transmitted

from cell to cell. The researchers looked at two spatial arrangements

of cells: a line of adjacent cells, and a plane covered in a hexagonal

array, like a honeycomb (see Figure 68). Both arrangements are

idealised compared with real tissues, but they capture the main

features of the system in a simple way. Both are networks: place a

dot at each cell and draw edges from that cell to its immediate

neighbours.
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The team set up suitable equations and used a computer to

solve them numerically. The results confirmed that if there is strong

enough feedback in the system, then initial tiny differences

between neighbouring cells will automatically be amplified. In fact,

this is another instance of symmetry breaking, analogous to the

way slight variations in the height of a flat desert are amplified by

the wind to create huge dunes. Here, the pattern is one of gene

activity: cells with high levels of Delta activity and low levels of

Notch activation are scattered among cells with low Delta activity

levels and high Notch activation levels. These represent the two

distinct fates of the original homogeneous array of cells.

The simulations often led to irregular patterns, but in every

case the irregularities took the form of two adjacent cells with high

levels of Notch activity. Two neighbouring cells with low levels of

Notch activity never occurred. Experiments show the same effect:

lateral inhibition causes primary-fate cells to be separated by at least

one secondary-fate cell, but secondary-fate cells may be adjacent to

one another.

The main conclusion answers the question raised earlier: it is

not necessary to specify the cell that initiates the pattern. Instead,

random fluctuations will amplify some initial tiny difference,

producing large-scale patterns. Similarly, a desert does not have to

be told which grain of sand will trigger dune formation.
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16 The Paradox of the Plankton
.................................

The uppermost layers of Earth’s oceans teem with plankton,

organisms ranging from microscopic creatures to small jellyfish.

Many are the larvae of much larger adults. They all occupy the

same kind of habitat and compete for much the same resources,

which is why they are all classed together under a single catch-all

name. However, there is a long-standing biological principle,

introduced in 1932 by the Russian biologist Georgyi Gause: the

principle of competitive exclusion. This states that the number of

species in any environment should be no more than the number of

available ‘niches’ – ways to make a living. The reasoning is that if

two species compete for the same niche, then natural selection

implies that one of them will win.

This is the paradox of the plankton: the niches are few, yet the

diversity is enormous.

The paradox is a problem in ecology: the study of systems of

coexisting organisms. Although it is often convenient for biologists

to study a given organism in isolation, as if nothing else existed,

the real world isn’t like that. Organisms are surrounded by, and

often inhabited by, other organisms. The human body contains

more bacteria – useful bacteria, vital to such functions as digesting

food – than it does human cells. Rabbits coexist with foxes, owls

and plants. These creatures interact with one another, often

strongly: rabbits eat plants, while foxes and owls eat rabbits.

Indirect interactions also occur: owls don’t eat foxes (except

perhaps very young ones), but they do eat the rabbits that the fox is

hoping will make the next meal. So the presence of owls has an

indirect effect on the fox population.
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In 1930 the British botanist Roy Clapham recognised the

interrelated nature of living creatures by coining the word

‘ecosystem’. This refers to any relatively well-defined environment,

plus the creatures that inhabit it. A woodland and a coral reef are

both ecosystems. In a sense, the entire planet is an ecosystem: this

is the essence of James Lovelock’s famous Gaia hypothesis, often

stated as ‘the planet is an organism’. In recent years it has been

recognised that if we are to ensure the continued health of the

global ecosystem, and of its important subsystems, we need to

understand how ecosystems work. What makes them stable, and

what factors create or destroy diversity? How can we exploit the

oceans without making many species of fish extinct? What effect do

pesticides and herbicides have, not just on their targets, but on

everything around them? And so a new branch of science was born:

ecology, the study of ecosystems.

An apparently different, but closely related, branch of biology is

epidemiology, the study of diseases. The subject can be traced back

to Hippocrates, who noticed that there was some kind of

connection between disease and environment. He introduced the

terms ‘endemic’ and ‘epidemic’, to distinguish diseases that

circulated within a population from those that came from outside.

Modern examples in the UK are chickenpox and influenza,

respectively. Epidemiology is similar to ecology because it also deals

with populations of organisms within an environment. However,

the organisms are now microorganisms such as viruses and bacteria,

and the environment is often the human body. The two subjects

start to overlap when transmission from one person to another

comes into play, because now we have to consider populations of

people as well as populations of disease organisms. It is, then, no

great surprise to find that similar mathematical models arise in both

subjects, which is one reason to treat them as variations on the

same overall theme.

............
A basic problem in both areas is to understand how populations of

organisms change over time. In many parts of the world we find

boom-and-bust cycles, where a population of, say, gannets grows

rapidly, exceeds the available food supply, and crashes, then repeats

the same process. The resulting ‘cycle’ need not repeat exactly the
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same numbers, but it repeats the same sequence of events. This

corner of ecology is known as population dynamics.

The earliest mathematical model of the growth of a population

seems to be Leonardo of Pisa’s famous rabbit problem of 1202,

mentioned in Chapter 4 in connection with plant numerology.

Start with one pair of immature rabbits. After one season, each

immature pair becomes mature, and each mature pair gives rise to

one immature pair (see Figure 69). If no rabbits die, how does the

population grow? Leonardo, usually known by his nickname

Fibonacci (son of Bonaccio), showed that the number of pairs

follow the pattern

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377

in which each number after the first two is the sum of the two that

precede it. As we saw, these are called Fibonacci numbers. They

have many interesting features; for example, the nth Fibonacci

number is very close to 0.7246(1.618)n.1 So Fibonacci’s little puzzle

predicts exponential growth: as we go further and further along the

sequence, we find that each successive number is (very close to) the

previous one multiplied by a constant amount, here 1.618.

The model is of course not realistic, and was not intended to be.

It assumes that rabbits are immortal, that the rules for the birth of

new rabbits are universally obeyed, and so on. Fibonacci didn’t

intend it to tell us anything about rabbits: it was just a cute

numerical problem in his arithmetic textbook. However, modern
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generalisations, known as Leslie models, are more realistic: they

include mortality and age structure, and have practical applications

to real populations. More about these models shortly.

For large populations, it is common to employ a smoothed or

continuum model, in which the population is represented as a

proportion of some notional maximum population, which means

that it can be thought of as a real number. For example, if the

maximum population is 1,000,000 and the actual number of

animals is 633,241, then the proportion is 0.633241, and the

discrete nature of the population is visible only in the seventh

decimal place. That is, all digits from that point on are zero,

whereas in a true continuum they could take any values.

One of the simplest such models of the growth of a species of

organism is the logistic equation.2 It states in mathematical

formulas that the growth rate of the population is proportional to

the number of animals, subject to a cut-off as that number

approaches the carrying capacity of the environment – a notional

upper limit to the size of a sustainable population. The solution is

known as a logistic or sigmoidal (S-shaped) curve, and it can be

described by an explicit mathematical formula. The population

starts near zero. At first it increases almost exponentially, but then

the growth rate starts to level off. The rate of increase of the

population reaches its highest value, and then starts to decrease.

Eventually the size of the population levels off at a value that gets

ever closer to, but never quite reaches, the carrying capacity. The

maximum growth rate occurs when the population is precisely half

the carrying capacity.

If a population of animals obeys the logistic equation, you can

observe when the growth rate peaks, and that enables you to

predict that its final size will be twice as big. Figure 70 is a classic
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example, from Gause’s The Struggle for Existence, showing growth

curves for two yeast species, Saccharomyces and Schizosaccharomyces,

derived from 111 experiments. It also shows the pattern of growth

when the two species coexist.

............
The logistic growth pattern is not realistic in many circumstances,

and many other models of population growth have been devised.

The principles underlying these models are relatively simple: at any

given instant the total population in the immediate future must be

the population now, plus the number of births, minus the number

of deaths.

Leslie models, the more realistic generalisations of Fibonacci’s

rabbits, provide a simple example of how these principles can be

implemented. They are named after Patrick Leslie, an animal

ecologist who developed them in the late 1940s. They are based on

a table of numbers called the Leslie matrix. A simple example

captures the basic ideas, and practical models are more elaborate

versions of the same thing.

Suppose we modify Fibonacci’s set-up to allow three age classes

of (pairs of) rabbit: immature, adult and elderly. We let time tick by

in discrete steps, 1, 2, 3, and so on, and assume that at each step

immature pairs become adult, adults become elderly and elderly

ones die. Additionally, each adult pair gives birth, on average, to

some number of immature pairs (which may be a fraction because

we’re working with the average). Call this the birth rate, and

assume for the sake of illustration that this is 0.5. Immature pairs

and elderly ones have no offspring.

The state of the population at any given time-step is given by

three numbers: how many immature, adult and elderly pairs there

are. Moreover, at the next time-step:

. The number of immature pairs is equal to the previous number

of adult pairs multiplied by the birth rate.

. The number of adults is equal to the previous number of

immature pairs.

. The number of elderly pairs is equal to the previous number of

adult pairs.
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These rules can be turned into a table of numbers, which in this

case looks like this:

0 0:5 0

1 0 0

0 1 0

0
BBBB@

1
CCCCA

This is called a Leslie matrix, and shows how the three age classes

included in the model change at each time-step. In order from left

to right and top to bottom, the age classes are immature, adult,

elderly. The entry in a given row and column tells us what

proportion of pairs in that column become, or give birth to, a pair

whose age class corresponds to the chosen row. For example, the

top row (0, 0.5, 0) says that we get 0 immature pairs from each

immature pair, 0.5 immature pairs from each adult pair and 0

immature pairs from each elderly pair.

The Leslie matrix encodes the rules for all transitions among age

classes, which can be more complicated than the ones I chose.

There might, for instance, be ten age classes, and most of those

might have various non-zero birth rates. The top row would then

become a longer sequence of specific, usually different, numbers. A

formula that incorporates this matrix can then be used to calculate

how the numbers of pairs in the three age classes change over time.

A theoretical analysis of this formula reveals that for any model

of this kind, there is a unique ‘steady’ age structure and overall

growth rate, and that almost any initial choice of numbers for the

various age classes ends up looking like this steady state.

For my choice of matrix, the steady age structure is

approximately 23% immature, 32% adult and 45% elderly. The

total population drops by 29% at each time-step (which reflects the

low birth rate of 0.5, below replacement level). So this population

of rabbits will eventually die out, rather than exploding like

Fibonacci’s rabbits.

If instead the birth rate were 1, the population would approach

a fixed size; if the birth rate were larger than 1, the population

would explode. This tidy transition at birth rate 1 arises because

only adults have offspring. With more age classes there are several

birth rates, and the change from dying out to exploding is more

complicated.
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............
An important application of such models is the growth of the

human population, currently estimated to be just under 7 billion.

Very sophisticated models are needed to predict future growth,

because this depends on age distribution, social changes,

immigration, and many other social and political features. But all

models must obey the basic ‘law of conservation of people’: people

can be created by birth, they can be destroyed by death and they

can move from one nation to another, but they can’t (astronauts

excepted) vanish into thin air.

This law can easily be turned into mathematical equations, but

the form of the equations depends on the birth rate and the death

rate, and on how these change as the population itself changes.

Leslie models use constant birth rates for each age class, and split

the population into a fixed number of age classes. Other models

replace these assumptions by more realistic ones: for instance, the

birth rates might depend on the overall population size, or people

might remain in a given age class for a certain time before moving

to the next one.

A good model requires realistic formulas for all birth and death

rates. These can be obtained if good data are available, but for the

world population accurate data exist only from 1950 to the present.

This is too short a time span to determine, with any certainty, the

specific form that the equations should take. So experts make

informed guesses and choose what seems most reasonable. Not

surprisingly, different experts prefer different models. Some use

deterministic models, some use statistical ones. Some combine the

two. Some are orthodox, some not.

In consequence, there is a lot of disagreement about when the

Earth’s population will peak, and how big it will be when it does.

Predictions range from 7.5 billion to 14 billion. Figure 71 shows the

growth since 1750, with a short prediction in the middle of that

range. The evidence suggests that the rate of growth has been fairly

constant since the 1970s, when the population reached 4 billion, so

there is no clear evidence that the growth rate is slowing down, let

alone that it will level off or start to decline. Nonetheless, the world

population is generally expected to peak some time in the next 150

years. The main reasons for this expectation are social and cultural.

An important one is the ‘demographic transition’, in which

improved education and standard of living cause a sharp fall in the
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size of families. But in many countries this is offset by rising life

expectancy, caused by improvements in medicine and standard of

living.

It is difficult to incorporate these effects into population models,

because they depend on scientific advances, political changes, and

cultural shifts, all of which are inherently unpredictable. Statistical

methods are often used, and like all statistics they work better for

large populations. So, just as it turns out to be easier to forecast the

global climate than to predict local weather, it is easier to forecast

the general trend of the global population than it is to predict

national populations. But even then, the uncertainties are huge.

............
The traditional states seen in dynamical systems are steady states

(also called equilibria), where nothing changes as time passes, and

periodic states, where the same sequence of events repeats over and

over again. A rock is in a steady state if it’s not moving and we

ignore erosion. The cycle of the seasons is periodic, with period one

year. But in the 1960s mathematicians realised that tradition had

completely missed another, more puzzling kind of behaviour:

chaos. This is behaviour so irregular that it may appear random, but
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The curve shows population size, bars show increases in size at intervals of

2.5 years.
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it arises in models without explicit random features, for which the

present completely determines the future. Such models include all

dynamical systems.

At first, many scientists viewed chaos with suspicion,

presumably because they thought that such outlandish behaviour

had no place in nature. But chaos is entirely natural: it arises

whenever the dynamics of a system mixes it up, much like

kneading dough mixes the ingredients. One consequence is the

‘butterfly effect’, which originally arose in weather forecasting. In

principle, and in a very specific sense, the flap of a butterfly’s wing

can change the global weather pattern. More prosaically, although

the future of the system is completely determined by its present,

this requires knowing the present to infinite accuracy. In practice,

tiny measurement errors in determining the present state grow

rapidly, making the future unpredictable beyond some ‘prediction

horizon’.

As soon as mathematicians started to think about dynamics

geometrically, chaos became obvious. It only seems outlandish if

you are looking for solutions that can be expressed by neat, tidy

formulas. And those are rare.

In fact, it was geometric thinking – about the stability of the

Solar System – that led the French mathematician Henri Poincaré to

discover chaos in 1895. A few sporadic developments occurred

during the first half of the twentieth century, but it all came

together in the 1960s when Stephen Smale and Vladimir Arnold

developed a systematic topological approach to dynamics. In 1975,

in a survey article in Nature, Robert May brought these new

discoveries to the attention of the scientific community, and

ecologists in particular.3 His main message was that complex

dynamics can arise in very simple models of population growth.

Simple causes can have complex effects; conversely, complex effects

need not have complex causes.

His main example, selected for its simplicity as an introduction

to these phenomena, was a variant of the logistic model in which

time ticks by in discrete amounts: 1, 2, 3, and so on. This

assumption is natural when studying successive generations of a

population, rather than its evolution moment by moment. ‘One of

the simplest systems an ecologist can study,’ May wrote,

is a seasonally breeding population in which generations do not

overlap. Many natural populations, particularly among
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temperate zone insects (including many important crop and

orchard pests), are of this kind . . . The theoretician seeks to

understand how the magnitude of the population in generation

tþ1, Xtþ1, is related to the magnitude of the population in the

preceding generation t, Xt.

As a specific example he cites the equation

Xtþ1 ¼ Xtða � bXtÞ
The initial population is specified as X0, and the formula is then

used to deduce the values of X1, X2, X3, and so on by successively

setting t to be 0, 1, 2, 3, ... . Here a and b are parameters –

adjustable constants whose values may change the dynamics. For

example, when b is zero the equation describes exponential growth

– very similar to Fibonacci’s rabbit model, except that now there is

only one generation. But when b becomes larger, the population

growth is restricted, modelling limitations on resources. A

mathematical trick4 simplifies the equation to

Xtþ1 ¼ aXtð1� XtÞ
with a single parameter a, and this is the form normally studied by

mathematicians.

The behaviour of this equation depends on the parameter a,

which has to lie between 0 and 4 to keep Xt between 0 and 1.

When a is small, the population converges to a steady state. As a

increases, oscillations set in, initially cycling through two distinct

values, then 4, then 8, then 16, and so on. At a¼3.8495, the regular

oscillations stop and the system behaves chaotically. Chaos then

predominates, but there are small ranges of a that lead to regular

behaviour (see Figure 72).

Fig 72 Chaotic behaviour in the discrete logistic model when a¼4.
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Although this model is too simple to be realistic, there is no

reason why more complex models should not behave in similar

ways, and there is plenty of evidence that they often do. So erratic

changes in natural populations, previously attributed to

irregularities in the environment such as changes in climatic

conditions, can in fact be generated by the free-running dynamics

of the population itself. May ended his paper with a call for such

examples to be widely taught in schools, to prevent people

assuming that irregular effects necessarily have irregular causes.

............
All well and good, but do real populations exhibit chaos? In the

wild, it is difficult to separate a population’s own dynamics from

the variations in environment that always occur in nature, so the

occurrence of chaos has been controversial. Most of the data that

zoologists and entomologists have collected over the years on

animal and insect populations are seldom extensive enough to

distinguish chaos reliably from randomness. The physical sciences

get round such problems by performing controlled experiments in

the laboratory, but even in the lab it is difficult to control the large

number of extraneous variables that might affect experimental

results in ecology. However, it’s not impossible.

In 1995 James Cushing and colleagues at the University of

Arizona began a series of experiments that demonstrate the

occurrence of chaos in populations of Tribolium castaneum, known

as the flour beetle or bran bug because it often infests stocks of

milled grain. Their theoretical model has three variables: the

number of feeding larvae, the number of non-feeding larvae (plus

pupae, and newly emerged adults) and the number of mature

adults.5 The flour beetle and its larvae indulge in egg cannibalism:

they eat the eggs of beetles in the same species, including their

own. This behaviour is incorporated into the equations of the

model.

Some of the experiments were performed under specially

controlled conditions: beetles were removed or added to the

population to mimic the mortality rates observed in the wild. Other

experiments were not manipulated in this manner. To avoid genetic

changes, the adult population was replenished from time to time

from other cultures, maintained under strict laboratory conditions.
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These experiments showed the expected onset of oscillations,

but not chaos. However, the theoretical model can be chaotic, and

the experimental system was quite close to the range of variables in

which chaos occurs in the model. By changing the protocol to

mimic a higher mortality rate than there would normally be in the

wild, the same team managed to drive the beetle population into

chaotic fluctuations.6 This second paper concludes:

The experimental confirmation of nonlinear phenomena in the

dynamics of the laboratory beetle lends credence to the

hypothesis that fluctuations in natural populations might often

be complex, low-dimensional dynamics produced by nonlinear

feedbacks. In our study, complex dynamics were obtained by

‘harvesting’ beetles to manipulate rates of adult mortality and

recruitment. For applied ecology, the experiment suggests

adopting a cautious approach to the management or control of

natural populations, based on sound scientific understanding.

In a poorly understood dynamical population system, human

intervention . . . could lead to unexpected and undesired results.

............
Chaos also solves the paradox of the plankton. The paradox is a

violation of Gause’s principle of competitive exclusion: there are

many more species of plankton than there are environmental

niches. The plankton can’t be wrong, so there must be more to the

principle than is usually thought. The question is, what?

There are well-established ecological models that agree with

Gause’s principle. Ultimately, they trace the relation between the

number of species and the number of niches to a general

mathematical fact: if you have more equations to solve than you

have variables, solutions don’t exist. Roughly speaking, each

equation pins down a relation between the variables. Once you

have as many relations as variables, you can find the solutions. Any

extra equation is likely to contradict the solutions already found. As

a simple case, the equations xþy¼3, xþ2y¼5 are satisfied only when

x¼1, y¼2. If we add a further equation, such as 2xþy¼3, it is not

valid for that solution. Only when the extra equation provides no

new information will the original solution survive.

The competitive exclusion principle often works well, and since
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the mathematics supports it, ecologists have a puzzle on their

hands.

Part of the answer is that the upper reaches of the Earth’s

oceans are vast, and plankton are not uniformly mixed. But it now

looks as though there could be a better explanation of the paradox

of the plankton. The standard mathematical model makes a

restrictive assumption: it seeks steady-state solutions to the relevant

equations. The populations of organisms in the species concerned

are assumed to remain constant over time; they can’t fluctuate.

This assumption in effect takes the ‘balance of nature’ metaphor

for an ecosystem too seriously. Real ecosystems, if they are to

survive for long, have to be stable. If the populations of various

organisms fluctuate wildly, some may die out, and that changes the

dynamics of the ecosystem. However, stability need not require the

entire system to remain in exactly the same state for ever, just as a

stable economy is not one in which everyone always has exactly

the same amount of money as they did yesterday. The crucial

feature of stability is that fluctuations in populations must remain

within fairly tight limits.

Chaotic dynamics does precisely that. It exhibits erratic

fluctuations, but the size and type of those fluctuations is

determined by an attractor: a specific collection of states to which

the system is confined. It can move around inside the attractor, but

it can’t escape. In 1999, the Dutch biologists Jef Huisman and Franz

Weissing showed that a dynamic version of the standard model of

resource competition can produce regular oscillations and chaos if

species are competing for three or more resources.7 In other words,

as soon as the system is allowed to be out of equilibrium, the same

resources can permit a much greater amount of diversity among the

organisms that are using them. Roughly speaking, the dynamic

fluctuations allow different species to utilise the same resources at

different times. So they avoid direct competition not by one of

them winning and killing off all the others, but by taking turns to

access the same resource.

The same researchers, and others, have since developed these

ideas into a wide range of models, and the resulting predictions are

often in agreement with data from real plankton communities. In

2008, Huisman’s team reported an experimental study of a food

web isolated from a natural one in the Baltic Sea, involving

bacteria, plant plankton, and both herbivorous and predatory
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animal plankton.8 Their observations were carried out over a period

of six years in a laboratory. The external conditions were kept

exactly the same throughout, but the populations of the species

concerned fluctuated significantly, often by a factor of 100 or more.

Standard techniques for detecting dynamical chaos revealed its

characteristic signs. There was even a butterfly effect: the future of

the system remained predictable only a few weeks or a month

ahead.

Their report remarks that ‘Stability is not required for the

persistence of complex food webs, and that the long-term

prediction of species abundances can be fundamentally impossible.’

And it refers back to May’s original suggestion that chaos could well

be important for our understanding of ecosystems – a prescient

insight that is now thoroughly vindicated.

............
Disease epidemics take place in a special type of ecosystem,

involving both the organisms that become infected and the

microorganisms – viruses, bacteria, parasites – that cause the

disease. So similar modelling techniques, suitably modified, can be

used for both ecosystems and epidemics.

In 2001 an abattoir in Essex reported that a consignment of pigs

was suffering from foot-and-mouth disease. The disease spread

rapidly, and the European Union slapped an immediate ban on the

export of all British livestock. In all, there were two thousand

outbreaks of the disease on British farms, leading to the culling of

ten million sheep and cattle. The total cost was around £8 billion,

and the news media showed piles of dead cattle being burnt in

fields, a scene straight out of Dante’s Inferno that did little for public

confidence. Was the strategy of stopping all animal movement

within the UK, and slaughtering all animals on any infected farm,

the right one?

Foot-and-mouth disease is caused by (several forms of) a virus

that hardly ever affects humans, a picornavirus (see Figure 27,

p. 141). But food is a very sensitive issue, so it would not be

acceptable to let the disease spread. It also causes damage to meat

and milk production, causes serious distress to the animals, and

leads to import bans. So the standard response throughout the

world is to eradicate it. Vaccination might become a viable and
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cheaper alternative. But even if the response is to slaughter infected

animals, or those that soon might be, many different strategies for

controlling the disease can be contemplated.

It is therefore important to decide which strategy is best.

Mathematical modelling of the 2001 outbreak, after the event,

suggests that initially the UK Government’s response was too slow;

then, when the disease became widespread, it was too extreme.

Only one animal in five among those slaughtered was infected. This

overkill may have resulted from inadequate and outdated

mathematical models for the spread of the epidemic.

Models are the only way to predict the likely spread of an

epidemic and to compare possible control strategies. They can’t

forecast which farms will be hit, but they can provide an overview

of general trends, such as the rate at which the disease is likely to

spread. In the 2001 outbreak, three different models were used.9

When the outbreak began, the main model available to DEFRA, the

government department then responsible for agriculture, was a

probabilistic one called InterSpread. This provides a very detailed

model, farm by farm if need be, and includes many different routes

for disease transmission. It might seem that the more realistic a

model is, the better it will perform, but ironically InterSpread’s

complexity is also its weakness. The calculations take a long time,

even with powerful computers. And fitting the model to real data

requires setting the values of a large number of parameters, so the

model may be unduly sensitive to small errors in estimating these

parameters.

A second model, the Cambridge–Edinburgh model, can also

represent the location of every farm, but it uses a much simpler

mechanism to model the transmission of the disease. Farms with

the disease are ‘infectious’, those that are not yet infected but may

come into contact with infected farms are ‘susceptible’, and the

model combines all these variables to come up with an overall

measure of how rapidly any given farm is likely to infect others.

This model forecasts the geographical spread of the disease quite

well, but its performance is poorer when it comes to the timing –

perhaps because it assumes that the disease takes the same time to

show up in all infected animals, and every animal remains

infectious for the same period of time. In reality, these times vary

from one animal to another.

The third model, the Imperial model, is based on traditional
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equations for the spread of epidemics, and was put together during

the epidemic. It was less realistic than the other two, but much

faster to compute, so it was more suitable for tracking the progress

of the disease in real time. It predicted the changes in the number

of infected animals, but not the locations of outbreaks.

Each model turned out to be useful for some types of forecast,

and subsequent analysis suggests that, on the whole, the strategy of

widespread slaughter was probably correct. It would not have been

feasible to determine precisely which animals were infected during

the rapid spread of the disease, and any infected animals mistakenly

left alive would create new centres from which the disease could

again spread, rendering previous actions useless. But the analysis

also made it clear that the initial response was too slow. If more

stringent restrictions on the movement of animals had been put in

place immediately, and early cases spotted sooner, then the disease

would not have had such a huge economic impact.

The second and third models also indicate that vaccination is

not likely to be an effective control strategy once the disease

becomes widespread, but vaccinating all animals in a ring

surrounding an infected farm might restrict the spread of the

disease if it is done right at the start.

These three models of the foot-and-mouth epidemic show how

mathematics can help to answer biological questions. Each model

was much simpler than any truly ‘realistic’ scenario. The models did

not always agree with one another, and each did better than the

others in appropriate circumstances, so a simple-minded verdict on

their performance would be that all of them were wrong.

However, the more realistic the model was, the longer it took to

extract anything useful from real-world data. Since time was of the

essence, crude models that gave useful information quickly were of

greater practical utility than more refined models. Even in the

physical sciences, models mimic reality; they never represent it

exactly. Neither relativity nor quantum mechanics captures the

universe precisely, even though these are the two most successful

physical theories ever. It is pointless to expect a model of a

biological system to do better. What matters is whether the model

provides useful insight and information, and if so, in which

circumstances. Several different models, each with its own strengths

and weaknesses, each performing better in its own particular

context, each providing a significant part of an overall picture, can
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be superior to a more exact representation of reality that is so

complicated to analyse that the results aren’t available when they’re

needed.

The complexity of biological systems, often presented as an

insuperable obstacle to any mathematical analysis, actually

represents a major opportunity. Mathematics, properly used, can

make complex problems simpler. But it does so by focusing on

essentials, not by faithfully reproducing every facet of the real

world.
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17 What is Life?
.................................

Biology is the study of life, in all its forms – on this planet.

Since we currently know of no other place in the universe where

life definitely exists, or used to exist, ‘on this planet’ may seem

superfluous. However, it points to a gap in today’s biological

knowledge, one that would be present even if there were no life

anywhere else in the universe.

In its strongest form, the gap is the general question ‘What is

life?’ Must all life in principle be similar to the living creatures of this

planet – built from carbon chemistry, controlled by DNA, composed

of cells . . . in short, just like us? Is there no alternative, not even

hypothetically? Or could entities that reproduce, and are

sufficiently complex and organised to qualify as ‘living’, be made

from different materials, be organised in different ways? More

strongly, do such entities exist, somewhere in our galaxy or another

galaxy?

More bluntly: could aliens exist – and do they?

The first part of this question is a lot easier than the second. We

can investigate the potential for exotic life forms without exploring

the planets that circle distant stars. But even then, we run into deep

problems. We’ve already seen that biologists disagree about whether

viruses are alive, so ‘life’ is to some extent a matter of definition. To

answer the second part, we have to make contact with

extraterrestrial life – whatever we decide that means. We might do

this by visiting another world, by observing chemical signatures of

living processes through powerful telescopes, by receiving messages

from an alien civilisation, or by waiting for aliens to visit us.

In the next chapter I will argue that UFO reports and claims of
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alien abduction are not sufficiently convincing to conclude that the

fourth of those options has already occurred. The SETI project has

been pursuing the third option since 1961,1 so far without success,

but it could pay off at any moment if advanced aliens actually do

exist. We are just beginning to attempt the second option. The first

is now being done using robotic explorers, and is currently confined

to our own Solar System. Humans last landed on the Moon in 1970,

and the proposed project to land a human on Mars has been

cancelled.

............
Some biologists define life to be just like Earthly life: based on

carbon, water, organic chemistry, DNA, proteins, the whole

shebang. It works here, but this surely begs the point, by making a

gigantic assumption for which no evidence exists. Worse, such a

concept of life has to be continually adjusted as we discover more

about our own planet’s more exotic inhabitants. A lot of Earthly life

is distinctly different from what we believed was ‘normal’ fifty years

ago.

I can’t help imagining two cavemen discussing the definition of

‘tool’. They quickly agree on two fundamental points: a tool has to

be made of flint and it has to fit in your hand. Otherwise there

would be no way to make it, and people would not be able to use

it. Now imagine their faces if some time-traveller turns up with a

bulldozer.

If we are to discuss potential forms of life – like ours or not –

the first step is to agree on a working definition of ‘life’, and I’ll

spend the rest of this chapter on that question, returning to aliens

in the next one. Life is one of those annoying concepts that can

usually be recognised when you see it, but turns out to be hard to

pin down precisely. I don’t personally find that to be either a

surprise or an obstacle: in my experience, the only scientific

concepts that can be pinned down with absolute precision are in

areas that were mined out long ago. Think of all the fuss about

whether Pluto counts as a ‘planet’. Even in mathematics, where

precise definitions are de rigeur, it is common for them to evolve as

new research reveals new aspects. We’ve already seen this for such

basic terms as ‘space’ and ‘dimension’.

Biologists don’t have a universally accepted definition of ‘life’;
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instead, they have several competing definitions, none totally

satisfactory. At one extreme, you can build carbon chemistry and

DNA explicitly into the definition. If you do, then anything

acceptable as a life form will use carbon chemistry and DNA – end

of story. However, this begs most of the interesting questions. From

the viewpoint of mathematics and physics, terrestrial life looks like

an example (rather, a gigantic number of closely related examples)

of what ought to be a far more general process. Many biologists feel

the same way: they dislike defining life in terms of what it is made

of: what it does and how it works seem more appropriate and less

limiting. It’s rather like having a mathematics that is limited to

numbers between 1 and 100, and wondering whether a more

general concept of number could preserve most of the interesting

properties observed in that range.

The upshot is that the current working definitions of life

concentrate on what it does, rather than what it is. The main

features of life are:

. possessing an organised structure;

. regulating internal behaviour in response to short-term changes

in the environment;

. maintaining both the above by extracting energy from the

environment;

. responding to external stimuli, say by moving towards a food

source;

. growing – in a way that does not merely accumulate more and

more stuff while doing nothing with it;

. reproducing;

. adapting to long-term changes in the environment.

These are not the only things that living creatures do, they are not

mutually exclusive, some are less important than others, and some

might even be dispensed with altogether. But in broad-brush terms,

if some system in nature exhibits most of the features on the list,

then it may qualify as a form of life.

To appreciate the difficulties, think about a flame. Flames have a

definite physical structure. They change their dynamics in response

to their surroundings, growing in the presence of fuel and oxygen,

dying down if these are absent. They extract chemical energy from
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the reaction between fuel and oxygen. They invade adjacent sources

of fuel. They grow. They reproduce: a forest fire starts as a single

flame. But the chemistry of flames today is the same as it was a

billion years ago, so they fall at the final hurdle.

With a vivid imagination, you could invent plausible aliens that

were complex systems of flames. If their chemistry could change

over long periods of time, depending on what the environment can

provide, they might evolve. In a way, we are like that: the energy

cycle that keeps our cells working – and us – is an internalised

flame. It is an exothermic reaction: it gives off heat. But we are

more than just an exothermic reaction.

Many alternatives to this list of properties of life have been

proposed. Nearly all of them feature the most obvious of life’s

characteristics: reproduction. They distinguish this from a closely

related ability: replication. The distinction is important – indeed,

vital.

An object or system replicates if it makes exact copies of itself, or

copies that are so similar that it is hard to tell the difference. It

reproduces if the copies have some degree of variability. A

photocopier replicates black-and-white text documents: aside from

differences in paper, and possible enlargement or reduction, the

copy is essentially the same as the original. In particular, the text,

which is what usually matters, is essentially identical, though even

here there are smudges and gaps: true replication in the strongest

sense is rare. Even copies of computer files may contain errors. In

contrast, a cat reproduces: its kittens, even when fully grown, do

not resemble it in detail, and they often have totally different

markings, sizes and gender. But they grow into cats and can, on the

whole, father or give birth to their own kittens. So the system ‘cat’

reproduces, but does not replicate.

One of the pithiest and potentially broadest definitions of life

was devised by Stuart Kauffman, and it is based on thinking of a

living organism as a complex system. This phrase has a specific

technical meaning: something composed of a large number of

relatively simple agents, or entities, which interact according to

relatively simple rules. The mathematics of complex systems shows

that despite the simplicity of the ingredients, the combined system

often (indeed usually) displays complicated ‘emergent’ behaviour,

not evident in the entities and rules. In Kauffman’s view, life is a

complex system that can reproduce, and can carry out at least one
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thermodynamic work cycle (which converts heat into work and can

be repeated over and over again, given a reliable heat source). All

other properties of life can be seen as possible – sometimes

inevitable – consequences of these basic features. This definition

emphasises general mathematical features of the system, not the

ingredients it is made from. However, it has yet to find favour

among the majority of biologists.

............
It is of course fascinating to realise that life on Earth is heavily

dependent on the information-bearing properties of DNA, and only

a scientist who is brain-dead could fail to want to know how it all

works. But this does not imply that when the question is ‘Life?’, the

answer is ‘DNA’. If the question were ‘Cake?’, few scientists would

settle for the answer ‘Baking soda’. They’d want to know just what

the baking soda contributed, and whether anything else might have

a similar effect. So it can’t be the details of terrestrial biochemistry

that really explain why life is possible: it must be the abstract

process that the biochemistry realises.

Life on Earth is one example, the only one we know. The

question is: an example of what?

Must life be based on DNA? If you think that DNA is the key to

life, you have to answer ‘yes’. Numerous interesting questions crop

up, even then. Would the ‘genetic code’ that turns DNA triplets

into proteins have to be the same as the code used on Earth? The

code is implemented by transfer RNA, and experiments show that

transfer RNA could implement a different code with the same

facility, using the same chemical processes. You can synthesise non-

standard transfer RNA and the whole system still functions perfectly

well. So let us accept as a working hypothesis that in principle

Earthly life does not employ the only system that would work.

Upping the ante slightly, it is also clear that any molecule

sufficiently similar to DNA could play a similar role. There could be

minor variants in which different bases occurred: even on Earth

some viruses employ RNA in place of DNA, and RNA uses uracil

instead of thymine; RNA also plays several key roles in the

reproduction of nearly all organisms. Synthetic ‘exotic bases’ have

been created in the laboratory and inserted into DNA double

helices. The code has been extended to a four-base code, in the
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laboratory, so the range of amino acids encoded could be in the

hundreds. So it seems unlikely that DNA is the only possible linear

‘information-bearing’ molecule (more properly, class of molecules,

since the whole point is that different organisms have different

DNA).

Nor need an information-bearing molecule be linear – tree-like

structures, or two- or three-dimensional polymer arrays, could also

be used. Because of the unique properties of carbon, it seems

probable that any large information-bearing molecule would have

to be organic (carbon-based) – but silicon could be a possible

alternative in the presence of the occasional metal atom, which

stabilises complex silicon-based molecules. In fact, the kind of

organised complexity that is required to make a living creature

could in principle be found in, say, magnetohydrodynamic vortices

in the photosphere of a star, crystalline monolayers on the surface

of a neutron star, wave-packets of electromagnetic radiation

crossing the wastes of interstellar space, quantum wave-functions,

or even non-material creatures inhabiting pocket universes whose

physics is very different from ours.

Whether or not such creatures actually exist, the thought

experiment ‘What if they did?’ suggests that there might be a

meaningful definition of ‘life’ that is valid in much greater

generality than ‘organised chemical systems that reproduce using

DNA’. This would be a definition that emphasised the abstract

processes of life, not special material constituents. Such a definition

would presumably involve the apparent ability of living creatures to

self-organise and self-complicate.

............
Until the middle of the twentieth century, the list of properties

used to define life could have been shortened to just one:

reproduction. (Some minor tweaks in what that word means would

rule out flames.) No known non-living object, or system, could

replicate, let alone reproduce. So living systems had a unique,

mysterious ability which non-living systems could not emulate.

Early proposals for the cause of this ability included possession of a

soul or the presence of some vital force (élan vital) that animated

non-living matter. But for scientists, explanations like these are

unsatisfactory unless the soul can be located somewhere in the
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organism, or the vital force can be identified. Otherwise we are back

to the medieval habit of explaining why objects fall by appealing to

some tendency to ‘move to their natural place’ – on the ground.

They fall because they move towards the ground . . . brilliant!

By the middle of the twentieth century it had become clear that

the ability to replicate is a system property: an ability arising from

the way the system is organised. Replication is a consequence of the

system’s structure; it does not require some magic extra ingredient

that no one can locate or identify. The system that proved this

definitely had no such ingredient, because it was a mathematical

abstraction. Its inventor was John Von Neumann, whom we have

already encountered as the creator of game theory.

Von Neumann’s first step in this direction came in lectures he

gave in 1948, and it was a thought experiment. Imagine a

programmable robot living in a warehouse filled with spare parts,

which it can manipulate. It also has a tape containing instructions.

The instructions tell it to wander round the warehouse and build a

copy of itself by picking up all the parts required – except for the

tape. Finally, it makes a duplicate of the tape and inserts this into

the copy.

There are problems with this description: for example, the robot

has to be able to copy the tape, so isn’t replication built in from the

start? Von Neumann’s point was that in this scenario, neither the

robot alone, nor its program, can replicate. Only the combined

system does that. The program replicates the robot; the robot

replicates the program. This division of roles was a key insight,

because it got round what had previously seemed to be an

insurmountable logical obstacle to a self-replicating device.

Suppose that a self-replicating entity exists. Then it must

contain within itself a complete specification of its own structure,

in order to know how to construct the copy. However, the copy

must also be able to replicate (or else it’s not a true copy), so this

internal specification of structure must contain something that

specifies the part of the copy that provides a complete specification

of its own structure . . .

More carefully: the device must contain a representation of itself.

Inside that representation must be a representation of the second-

generation device. Inside that must be a representation of the third-

generation device, and so on. So it looks as though any self-

replicating device has to resemble a set of Russian dolls, each nested
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inside the previous one, and this set of dolls must go on for ever. If

it didn’t, the smallest doll would not contain a representation of

itself, and so could not replicate.

No physical entity can do this: at some point, the doll has to

become smaller than the smallest fundamental particle. Of course

no living entity can do it either, but that’s not a problem if you

believe that life rests on some supernatural ‘essence’. The

supernatural doesn’t have to make sense.

Von Neumann’s proposal for the architecture of his device

avoided the Russian-doll objection. It did so by interpreting the

same physical object – the program on the tape – in two

conceptually distinct ways. In one, the program consisted of

instructions, to be obeyed. In the other, it consisted of symbols, to

be copied. In one, a piece of paper with ‘put the kettle on’ causes a

kettle to be boiled. In the other, it leads to a second piece of paper

bearing the message ‘put the kettle on’.

Now the program can replicate the robot when the robot obeys

the instructions, and the robot can replicate the program by

copying it but not obeying the instructions.

............
Von Neumann wasn’t satisfied with this set-up, because he couldn’t

see a good way to analyse it mathematically, or to build a real

machine that could carry it out. At the time, he was working at the

Los Alamos National Laboratory in New Mexico, and one of his

colleagues was the mathematician Stanislaw Ulam. Ulam, renowned

for his original turn of mind, had been modelling the growth of

crystals using a lattice: a square grid like a large chessboard, without

the chequered pattern. He suggested that Von Neumann might be

able to implement his self-replicating machine by employing a

similar trick. In detail, Ulam’s idea was to define a self-replicating

cellular automaton (see Figure 73).

In this context, an automaton is a mathematical system that

can obey simple rules – in effect, perform elementary computations.

A cellular automaton is a grid with rules, like a simple video game.

It is a special kind of complex system, with cells as entities and –

well, rules as rules. Each square on the grid – each cell – can exist in

a variety of states. One way to visualise the states is to colour the

cells, so that possible states correspond to a list of colours. Each cell
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now obeys a specific system of rules, in which its own colour and

those of its neighbours determines the next colour for that cell. For

instance, with two colours ‘red’ and ‘blue’ the rules might be a list

of statements like this:

. If you are red and your four immediate neighbours are all blue,

turn blue.

. If you are red and exactly three of your neighbours are blue, turn

blue.

. If you are red and exactly two of your neighbours are blue,

remain red.

The full list would cover all possible patterns of states.

With the colours and rules in place, you start the automaton in

some pattern of colours (initial state), apply the rules

(simultaneously on all cells) to get the next pattern, repeat to get

the pattern after that, and so on. It sounds simple, but the

consequences can be complex. A suitable cellular automaton can

mimic any calculation that a real computer can carry out.

Inspired by Ulam’s suggestion, Von Neumann worked out a set

of rules for an automaton with 29 cell colours.2 The replicator

device occupied about 200,000 squares; the rest were left blank – in

effect, another colour, which changed only if a neighbouring cell

ceased to be blank. Von Neumann proved that by following the
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simple list of rules, the automaton would build a copy of itself.

Which would then build another copy, which would build another

. . .

He never published his results – he may have seen them as a

diversion from his main research, or he may have lacked the time

or the inclination. Whatever his reasons were, it’s a pity that he

didn’t put his ideas into print, because they would have constituted

an important mathematical prediction about real organisms:

namely, when an organism reproduces, it must employ some list of

data (the tape) that has two distinct functions – to control the

replication procedure, and to be copied. The discovery of the

structure of DNA, and its role in the reproduction of organisms,

would have verified that prediction. As it happens, Von Neumann’s

work came to public attention only in 1955, just after Crick and

Watson’s epic paper. And it was not until 1960 that the American

mathematician and computer pioneer Arthur Burks gave the first

complete proof that Von Neumann’s mathematical machine could

replicate.3 So the chance to predict a basic mechanism of biological

reproduction from general mathematical principles went begging.

............
Several people took up Von Neumann’s ideas. Conway (whom we

last came across in knot theory) was among them: he invented a

cellular automaton with dynamics so flexible and ‘unpredictable’

that he named it the Game of Life.

‘Life’, as it is usually known, is played with counters on a square

grid. The game begins by setting up some finite configuration of

counters, the initial state of the automaton. Then a short set of

simple rules, involving the number of immediate neighbours of

each counter, is applied to get the next configuration. These rules

govern the survival, birth or death of counters. Dead counters are

removed from the grid, newborn ones are added and the rest stay

where they are.

The precise rules are:

. A counter with 0 or 1 neighbours dies.

. A counter with more than 3 neighbours dies.

. A counter with 2 or 3 neighbours remains alive.
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. An empty space with exactly 3 neighbouring counters gives birth

to a new counter.

There is a host of information about Life on the Internet, together

with free software to run the game.4 Life runs on rigid rules, so the

future of any given initial configuration is completely determined:

if the game is run again starting from the same shape, the

subsequent history is the same as before. Nevertheless, the outcome

is unpredictable in the sense that there is no short cut that can

predict what happens – all you can do is run the game and see what

evolves. This is one of several ways in which ‘deterministic’ and

‘predictable’ differ in practice, despite being essentially the same in

principle.

Despite the simplicity of the rules of Life, its behaviour can be

astonishingly rich. So rich, in fact, that it is sometimes

unpredictable in a very strong sense, even though the initial state

completely determines everything that happens later. In 1936, Alan

Turing provided a solution to the halting problem, proving that in

general it is not possible to forecast ahead of time whether a

computer program will terminate with an answer, or go on for ever

– for example, getting stuck in a loop and repeating it indefinitely.

Conway and others proved that there exists a configuration in Life

that forms a universal Turing machine, a mathematical

representation of a programmable computer.5 So there is no way to

predict whether a given Life configuration will live for ever or die

out.

In 2000, Matthew Cook found a simpler universal Turing

machine, by proving a conjecture that the English polymath

Stephen Wolfram, had made in 1985: a cellular automaton whose

states form a line of cells, rather than square grid, can also mimic a

universal Turing machine.6 This automaton is known as ‘Rule 110’.

It has two states, say 0 and 1, and its rules are very simple. To find

the next state of a cell, look at that cell and its two neighbours to

the left and the right. If the pattern is 111, 100 or 000, that state

becomes 0; otherwise, it becomes 1. It is remarkable that such a

simple system of rules can in principle do anything that a computer

can do – for example, calculate π to a billion decimal places. This

reinforces the main message of artificial life: never underestimate

the complexity of the behaviour that can result from simple rules.
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............
When Conway invented the Game of Life, Chris Langton, who at

the time was working in a hospital programming mainframe

computers, found the game so interesting that he began to

experiment with computer simulations of features of living

creatures. Burks was running a postgraduate programme at the

University of Michigan, and in 1982 Langton joined it. The

outcome was a new sub-branch of science: artificial life. Some

people object that this name is an exaggeration, but it should be

obvious that the name is not intended to indicate the creation, by

artificial means, of real life. Instead, it refers to non-biological

systems that mimic, or emulate, some of the key features of living

organisms, such as replication. Those features are puzzling in their

own right, independently of their physical realisation, so it makes

sense to study them in mathematical systems that separate the

features from what they are made from.

Langton described the new field at the first conference on the

topic, saying

Artificial life is the study of artificial systems that exhibit

behavior characteristic of natural living systems. It is the quest

to explain life in any of its possible manifestations, without

restriction to the particular examples that have evolved on

earth . . . The ultimate goal is to extract the logical form of

living systems.7

As a demonstration of what was possible, Langton had already

invented the first self-replicating ‘organism’ to be implemented in a

real computer. But replication is only one of the puzzling features

of living organisms. Reproduction – replication with occasional

errors – opens up the possibility of evolution; all that is required is

a selection principle, to decide which changes to keep and which to

discard.

Over the past thirty years, a seemingly endless stream of

artificial life systems, defined in many different ways, has made

three things abundantly clear – all of them contrary to most

previous intuition:

1. Almost any rule-based system, capable of any kind of behaviour

more complex than steady states or periodic cycles, is capable of

very complex behaviour indeed. In rule-based systems, complex

behaviour is the norm.
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2. There is no significant connection between the complexity or

simplicity of the rules, and the complexity or simplicity of the

resulting behaviour. Complex rules can lead to behaviour that is

simple, or complex. Simple rules can lead to behaviour that is

simple, or complex. There is no ‘conservation of complexity’

between rules and behaviour.

3. Evolution is a remarkably powerful way to create highly

complex structures and processes, without designing the desired

features into the evolving entities in any explicit way.

Langton’s basic idea has been implemented in many different

forms, in systems with names like Tierra, Avida and Evolve.

Darwinbots, introduced in 2003 by Carlo Cormis, is typical.8

Individual organisms, the aforementioned bots, are represented on

the computer screen as circles. Each bot is equipped with simulated

genes, which affect its behaviour. It acquires energy by feeding, and

its energy runs down as it carries out its activities. If the energy

level gets too low, it dies. The bots display a rich variety of

behaviour. Unlike the cells in Life and Rule 110, they can wander

around all over a plane, and are not confined to specific, discrete

cells.

The philosophical stance known as ‘weak alife’ holds that the

only way to create a living process is through chemistry. (‘Alife’ is

jargon for artificial life.) Since we already know that the standard

DNA-based system that occurs naturally on Earth can be changed

and will still work, it is not possible to retreat further and insist that

the form of life that we know is the only kind that is possible.

However, we have no solid evidence of non-chemical life, so it is

reasonable to argue that all life must be chemical.

The main message of artificial life is more imaginative and more

speculative. It goes back to Von Neumann, and is called ‘strong

alife’. This position maintains that life is not a specific chemical

process, but a general type of process that does not depend on the

medium used to implement it.

If strong alife is right, what matters is not what life is made

from, but what it does.
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............
Synthetic life may sound rather similar to artificial life, but the term

refers to organisms that run on conventional biochemistry but are

synthesised in the laboratory from inorganic ingredients.

In 2010 a team at the J. Craig Venter Institute in Rockville,

Maryland, announced the creation of an organism nicknamed

Synthia. First, the team made a copy of the genome of the

bacterium Mycoplasma mycoides, 1.2 million base pairs, by purely

chemical techniques – no living organisms involved. (They also

added some coded messages to distinguish the copy from the

original, challenging other scientists to break the code. They did,

fast.) Then they removed the DNA from a related bacterium and

replaced it with this synthetic genome. The resulting bacterium was

then able to replicate, proving that the replacement genome

worked.

The achievement gained worldwide publicity as the creation of

the first synthetic life form – but that is an exaggeration. It’s like

overwriting part of your computer’s memory with an exact copy of

the same code, typed in by hand, and claiming to have built a new

computer. The manufacture of Synthia was also condemned as

‘playing God’, an equally exaggerated criticism.

Synthia is important, though not to the extent that the hype

suggested. It shows that long DNA sequences can be assembled

from scratch in the laboratory. It adds weight to the belief that the

activity of DNA in an organism follows from the laws of chemistry,

rather than some mysterious aspect of life. And it is a useful step

towards the Minimal Genome Project, whose objective is to make a

synthetic bacterium with the smallest genome that allows it to

replicate.9 This hoped-for bacterium has been dubbed Mycoplasma

laboratorium, and unlike Synthia, its genome will not be a copy of

an existing natural one. But the rest of the cell’s biochemical

machinery will still be taken from a pre-existing organism.

That would be like writing a new operating system and loading

it into an existing computer: closer to making a brand new

computer from scratch, but not there yet. So genuine synthetic life

is still some way off.
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18 Is Anybody Out There?
.................................

Armed with an understanding of the different meanings that might

be assigned to the term ‘life’, we can now return to the question

raised at the beginning of the previous chapter: Does life exist

outside our own planet?

Scientists have never observed an alien life form, except perhaps

some tiny fossils in a meteorite, found in Antarctica and designated

ALH 84001, which some scientists think are evidence of past life on

Mars (Figure 74, see over). In 1996, NASA scientists announced that

the meteorite, thought to come from Mars, contained tiny fossil

bacteria. That claim remains controversial, and seemed to have

been comprehensively demolished until a recent reappraisal left a

tiny bit of room for hope, by answering some of the original

objections to a biological origin.1 It’s pretty clear that the meteorite

did come from Mars. Trapped gases in tiny bubbles in the rock

match the profile of Mars’s atmosphere extremely well, and

calculations indicate that rock could have been blasted out of the

Martian surface by an impact with a small asteroid. And if that

happened, some of the debris from the blast could have ended up

impacting the Earth and landing on the ground in the Antarctic,

where this particular meteorite was found. The rock does contain

strange, tiny shapes, but whether these shapes were once alive is

the key issue – many think that the ‘fossils’ might be the result of

non-biological processes. It’s difficult to give a definitive answer.

Since extraordinary claims require extraordinary evidence, the

burden of proof is on those who assert that the shapes are fossils of

once-living organisms.
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Can we say anything genuinely scientific about life on other

planets?

............
I think we can, thanks yet again to the role of scientific inference.

Our current understanding of the origins of Earthly life suggests

that there is nothing particularly special about our planet, so we

should expect to find life elsewhere. Even intelligent life, aliens.

Some scientists disagree, and argue that the Earth is special, so that

life elsewhere may be very unusual, and complex life very unusual

indeed. In their book Rare Earth, Peter Ward and Donald Brownlee

make a persuasive case for this assertion, listing numerous features

of the Earth and the Solar System that make it particularly suitable

for life.2 They accept that life elsewhere is entirely possible, but

expect it mostly to be at the level of bacteria. Intelligence, they

argue, will be very rare indeed. Others go even further, and assert

that our planet is unique: the only place in the entire, vast universe

where life exists.

Scientific opinions on the prospects for alien life take one of

three broad positions:

. Alien life does not exist (not by definition, but by sensible

scientific principles).

. Alien life does exist but must be very like terrestrial life.

Profile Books - Maths of Life Data Standards Ltd, Frome, Somerset – 10/2/2011 01 Maths of life Chapters.3d Page 290 of 336

Fig 74 Suspected fossil bacterium in a meteorite from Mars. It is less than one-

thousandth of a millimetre long.

290 // Mathematics of Life



. Alien life does exist and much of it is totally unlike terrestrial

life.

The first position is rather negative, but since there is currently no

convincing evidence of alien life, it is safe from attack, at least for

now. However, current scientific understanding of the origins of life

by natural physical and chemical processes does not limit life to

one planet among 200 billion galaxies, each having on average up

to 400 billion stars, a significant proportion of which (maybe one in

four) probably has several planets. So it would be a big surprise if

the Earth really is the only place in the universe where life exists,

even if it has to be exactly like ours.

The second position is the most respectable scientifically,

though not the most imaginative. We know that life forms like ours

are definitely possible, and we don’t know for sure that anything

different can occur naturally. (Unnaturally is another matter.) The

emerging science of astrobiology, or exobiology, combines Earthly

biology with astronomy. Until recently it was almost solely focused

on the prospects for Earth-like life, requiring an Earth-like planet.

The more we understand about the origins of life on Earth, the

more stringent these requirements become, and our best estimate of

the chance of finding such kinds of life is correspondingly reduced.

However, the third position is slowly gaining ground. There are

many valid scientific reasons to think that alien life need not be

exactly like ours. One of the most important characteristics of life is

that it is adapted to its environment – the basic feature of

evolution. There seems to be no good reason why organisms could

not evolve in, and become just as adapted to, an environment that

differs from anything found on Earth. Insisting on an Earth-like

environment as a prerequisite for life seems too narrow. It would be

like Victorian explorers expecting all human beings to resemble

Victorians in dress, manners and social structure, and ruling out the

African forests as a human habitat on the ground that there aren’t

any milliners’ shops there. Many astrobiologists are coming round

to the view that while other Earths (just like ours) may indeed be

rare, alien life might exist on worlds that differ from ours. A better

term for this view is xenobiology, the biology of strange life;

‘xenoscience’ might be even better,3 to make the point that alien

‘biology’ might be radically different from anything in our biology

textbooks.
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............
How likely is it that the Earth is the only planet, anywhere in the

universe, with intelligent life?

To keep the numbers simple, assume there are 1022 planets. By

the law of large numbers, in order for there to be one planet on

average with intelligent life, the probability of a planet harbouring

intelligence must be 10�22, one chance in ten sextillion. If the

probability is 100 times bigger, then we expect 100 such planets; if

it’s 100 times smaller, we expect 1/100 such planets – which I’m

inclined to interpret as ‘none’. It therefore requires some very

precise cosmological fine-tuning to hit the magic number 1 that

makes our own world unique. It seems unlikely that any plausible

physical mechanism could translate the probability of intelligent

life into a specific number of planets. So either Earth won the

jackpot in a cosmic lottery, or we are not alone.

Standard calculations indicate that in the critical case when the

probability is exactly 10�22, the probability of intelligent life being

unique is 37%. The probability of no planets with intelligent life is

also 37%, and the probability of two or more is 26%.4 Those aren’t

bad odds, but it is a sobering thought that even when the universe

is exquisitely fine-tuned for humans to be unique, we should expect

no worlds with intelligent beings just as often as a unique one. And

more than one is almost as likely.

If some day we discover that we really are alone, then either

we’ll need a better mathematical model, or we’ll be forced to

conclude that some kind of cosmic destiny has arranged for us to

be unique. Right now, the best guess is that we are not alone.

Planets with intelligent life are probably rare, but the universe is so

vast that if there were about a quadrillion such worlds in the

universe, all currently harbouring intelligent life,5 then there would

be less than ten thousand in our own galaxy. On average, the

nearest one would be about a thousand light years away. So the

universe could be teeming with life, and we’d never encounter it.

............
A quick look on the Internet reveals that many non-scientists are

convinced not only that aliens exist, but that they have already

paid us a visit. However, the US Government has instituted a cover-

up, so we don’t see aliens walking around our neighbourhood. I’m
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willing to believe that the US Government – or any government –

could decide to cover up alien visitations; however, I doubt it could

succeed for long, and I don’t think it has – because I don’t think

there’s anything to cover up.

The main reason for disbelieving these tales of alien visitations

is not political opinion, or the mindset of the believers, but the

science of alien life – which is thriving, and entirely scientific,

despite a complete absence of observations of aliens.

It is possible to do good science, even when the subject under

discussion has never been observed. Physicists have done a huge

amount of work on the Higgs boson, a particle predicted by the

‘standard model’ of subatomic particles, but no one has yet

observed one. In fact, that’s what the Large Hadron Collider, which

famously broke down days after it was first switched on, is looking

for. Assorted nations have committed $9 billion to get it built and

keep it running. It is now back in action, but unlikely to find the

Higgs boson before this book is published.

No one has ever observed a superstring, but string theorists have

devoted a lot of effort to these hypothetical objects because they

have the potential to unify quantum theory and relativity. No one

has observed a universe coming into existence, but on the whole,

cosmologists don’t resign and get jobs as hedge fund managers

because of that. No one has observed the interior of a black hole,

the birth of a Neanderthal, the emergence of life on land, a herd of

wandering sauropods or the gravitational field of the Andromeda

Galaxy. Not directly, and in many cases not at all. But these areas

are all solid parts of the scientific enterprise.

In fact, you could do a lot of excellent science in a quest to

prove that aliens don’t exist. Rare Earth is a case in point.

Science is not simply a matter of direct observation. It is an

intricate interplay between theory and experiment, and the

experiments are often indirect. The strength of science is inference.

No one alive in the past million years observed the evolutionary

divergence of humans from chimpanzees, but scientists are in no

doubt that this event happened, because many independent lines of

investigation all point inevitably to that conclusion. The fossil

evidence, the observed ages of the rocks that contain them, the

immensely detailed DNA evidence, and the biochemistry of chimp

and human bodies all make this contention at least as certain as the

Earth going round the Sun.
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Martian microfossils aside, the main claims of alien observations

come from ufologists, New Agers and believers in the paranormal.

Abduction is a common scenario. The typical ufological alien, often

called a ‘grey’, is humanoid, shorter than us, with a greyish skin, a

large head, huge oval eyes and tiny nostrils (see Figure 75). Its

bodily proportions are different from the human, and its limbs have

different joints. Greys dominate reports of encounters with aliens to

an extent that is quite remarkable: 90% in Canada, 65% in Brazil

and 40% in the USA. In Europe the figure drops to around 20%,

and Britons, eccentric to the last, reach only 12%.6

Ironically, the main reason for disbelieving such reports of alien

visitors is not that greys are too strange to be credible. It is the

exact opposite: they are not strange enough. Greys are the wrong

kind of alien. They are far too similar to us. And the science that

justifies that claim is good, solid, terrestrial biology.

............
From the 1960s, my biologist friend Jack Cohen gave over 300

lectures to schools about life on other planets. One of the key
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scientific principles he explained to them was how to decide which

features of life on our planet are likely to be found in alien life

forms, if they exist, and which features are merely accidents of

evolution on this world and would not be expected elsewhere. I say

‘likely to’ because the discussion has to be theoretical at this stage

in our exploration of the universe.

Cohen distinguished these two types of feature, calling them

universals and parochials. The words can be used both as adjectives

(‘this is a parochial feature’) and as nouns (‘this feature is a

parochial’). Five digits on a hand is a parochial, but appendages

that can manipulate objects are universal. Wings covered in feathers

are parochial, but the ability to fly in an atmosphere is a universal.

Daisies are parochial, but photosynthesis – obtaining energy from

light – is universal. The term ‘universal’ does not mean that such

creatures will exist everywhere, not even on every suitable planet.

Flight needs an atmosphere, for instance, but we don’t expect every

planet with an atmosphere to have flying creatures. Universals are

features that are very likely to evolve on other suitable worlds.

Parochials, on the other hand, are local accidents, and we would

not expect to see them elsewhere.

The creatures of our planet, at any level of detail, are mostly

parochial instances of universals. Each particular type of eye – and

there are hundreds of clearly different structures – is a parochial,

but vision is a universal. Legs differ from one creature to the next,

but locomotion is a universal. Such examples motivate a test that

can distinguish the two types of feature. Did the feature evolve just

once, or many times independently? ‘Just once’ allows for

subsequent modification in many different descendant species.

‘Independently’ means that the different instances have no such

evolutionary connection.

In humans, the airway and foodway cross, resulting in many

deaths each year from choking. We share this structure with most

mammals. It’s a very poor ‘design’, and goes back to an

evolutionary accident. About 350 million years ago there were no

large land creatures, but in the seas and oceans were many fish.

Some had lungs on the top of their bodies, some had lungs

underneath. (Taking in some of the planet’s atmosphere to power

chemical reactions is universal: where the associated organs go is

parochial.) The lobe-finned fishes that evolved into land animals,

mentioned as transitional forms in Chapter 5, happened to have
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their lungs underneath. Our own awkward arrangement is a

consequence. It is reasonable to think that some other fish might

have made the evolutionary transition to land instead, even on this

planet; certainly there seems to be little to stop an analogous event

happening elsewhere. So foodway-crossing-airway is a parochial.

Fossil evidence supports the view that the transition from sea to

land was gradual. Fish did not suddenly come out on land, contrary

to the Gary Larsen ‘Far Side’ cartoon in which three young baseball-

playing fish are gazing wistfully at the ball, which has popped out

onto the land. The transition from fins to limbs probably happened

while the fish were still in the sea, scuttling around in the shallows

and increasingly using their fins to push against the mud and sand.

Their ability to ‘walk’ along the seabed evolved in concert with the

structure of their limbs. By the time they were inhabiting the land

permanently, their fins had changed to legs. Pentadactyl limbs,

ending in five digits, evolved during this period, and were

transmitted from the fishes that scuttled in the shallows to

amphibians, then to reptiles, then to mammals and us. The entire

structure of our limb joints is parochial. However, possessing

jointed limbs is universal. It evolved independently in insects, for

example.

The ‘evolved here many times’ test for a universal is closely

linked to Earth’s particular evolutionary history. Intelligence is a

universal by that definition: it has evolved in the octopus and the

mantis shrimp, as well as mammals. But human-level intelligence –

what Cohen and I call ‘extelligence’, the ability to store cultural

capital and know-how outside ourselves in a form that can be

widely accessed – seems to have evolved only once on Earth.

Dolphins are smart but they don’t have libraries. So extelligence

fails the evolutionary test for being a universal. However, it’s

reasonable to argue that it ought to be a universal. Our specific brain

structure is parochial, and even brains as such may be, but

extelligence is a generic trick, offering clear evolutionary

advantages, rather than a specific accident of heredity. Perhaps we

haven’t waited long enough for it to arise again.

This suggests that we should broaden our definition, replacing it

by a more theoretical version. A parochial is a specific feature that

appears to have arisen by accident, and would be unlikely to occur

in the same form in a rerun of Earthly evolution. A universal is a

general feature that could be realised in many different ways and
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appears to offer a clear evolutionary advantage, and would probably

emerge again if evolution were to be reset and run a second time.

Agreed, this definition leaves room for debate, but the whole idea is

intended as a guideline, not as a hard and fast rule. It is a guideline

for how to think about the possibility of life on other planets.

How good a guideline it is will depend on whether we find such

life, and what it looks like if we do.

............
Most of us absorb our images of aliens from television and movies.

Mine came initially from the Eagle comic, and the exploits of Dan

Dare, Pilot of the Future, tangling with green-faced Venusian Treens

and the evil Mekon, who had an enormous head and a small body,

and rode on some sort of antigravity cushion. Comics had more

room for imagination than movies or TV. In those media, before

computer graphics reached its current levels of realism, aliens had

to be thinly disguised human actors, insects magnified to gigantic

proportions, or invisible presences that glowed in the dark, emitted

sparks or disturbed the air and moved the curtains. Now they can

be impressively detailed creatures that inspire terror, like the

mother alien in Alien, or they can be cute and cuddly like the

Ewoks in Return of the Jedi. And that is what their designers intend,

and it is why the aliens in the media mislead us about what real

aliens might look like.

Media aliens are invented in order to stimulate specific human

emotions. This makes them hopelessly parochial, and many of their

features make no scientific sense at all. The aliens in Alien grew

inside a human body until they reached the size of a cat, and then

burst out gorily through the chest wall. Leaving aside the question

of why the victims often didn’t know they had a cat-sized lump

inside them, how did a creature on another planet evolve to exploit

the biochemistry of a human body? They might just possibly be

generalist parasites that can make use of a variety of other creatures

as hosts, but it is almost impossible for that kind of generalism to

evolve. Parasites co-evolve with their hosts, and are usually very

specialised. Dog fleas can’t survive for long without a dog, even

though they may temporarily infest a human.

The great universal is evolution. That is how life can diversify,

and some of it becomes more complex, while growing ever more
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suited to the conditions on its home planet. A real alien would

have evolved in some environment elsewhere in the universe, and

it would be adapted to that environment. So, in order to invent

scientifically credible movie aliens, you would have to invent a

plausible environment and evolutionary history as well. Mother

alien and her parasitic children don’t work. But few movie or TV

producers go to those lengths. ‘It’s science fiction, it doesn’t have to

make sense,’ they seem to think. But this is a recipe for

unconvincing entertainment, bad science fiction, and even worse

science.

Another source of images for aliens is human culture. Previous

generations saw – well, some thought they saw, and many believed

in – ghosts and pixies and other supernatural creatures. Claims of

alien visitations and abductions are part of a long tradition of

fearsome supernatural creatures, presented in terms that made sense

to the culture concerned. They all probably have the same origins:

sleep paralysis, in which we can become awake while still in the

dreaming state, where our limbs refuse to move and our critical

faculties are suppressed. The dreamed abduction seems real because

the part of the brain that distinguishes dreams from reality is not

functioning, and we experience a feeling of terror because we can’t

move.

Specific images and aspects of these supernatural visitors spread

through the culture. Even people who don’t believe in UFOs ‘know’

that aliens have huge, dark eyes and big heads. That’s how you tell

they’re aliens. Actually, it’s how you tell they are fictions. Greys are

too humanoid: they are built from minor variations on human

parochials. They are the lazy way to invent an alien: make it like us

but change a few features for dramatic effect. It’s not just the shape

– bipedal, head at the top, human-shaped skull (just exaggerated).

Greys breathe our air – but few creatures that had evolved on

another world would be able to do that, unless that world’s

atmosphere were very similar to ours. Even humans have trouble on

this planet if they merely move to high altitude, where the air has a

similar composition but is thinner. Only people who grew up at

such heights are comfortable there. Go to Peru, and you’ll see what

I mean.
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............
That said, there is room for disagreement. There is also a long

tradition of scientific theorising about aliens, arguing that they

must be very much like us – maybe not in form, but in their

biochemistry and the kind of environment they could live in. The

fledgling science of astrobiology mostly takes what we know of

Earthly biology and projects it onto the background of alien worlds

which we know about through astronomy. The search for alien life

then becomes the search for habitable worlds, where ‘habitable’

means that we could live there. Or something very similar to us,

adapted to local conditions as Peruvians are to altitude.

If you think aliens should resemble us, you can assess the

prospects for aliens by starting with life on Earth. How does Earthly

life (identified simply with ‘life’) work? Despite its diversity,

everything relies on DNA, RNA and a very standard system of

molecular machinery. There are some variations, but they are slight.

What do Earth’s creatures need to survive? Water, oxygen, land to

live on, comfortable temperatures, low levels of radiation. Energy

from the Sun. A stable environment – well, fairly stable: not too

many earthquakes, volcanic eruptions, tsunamis, forest fires, or

inbound comets and asteroids.

Does this mean that all alien life forms would need the same?

That they, too, would have the same kind of DNA? The argument

for this view boils down to one simple fact: the only life that we

know anything about exists on this planet. All else is hypothetical.

From this point of view, the only sensible scientific position is that

our kind of life is the only kind of life. Don’t agree? Then show me.

If you insist. There are good reasons to suppose that DNA may

not be the only game in town. In the previous chapter we saw that

virtually every major player in the Earth’s biochemistry can be

modified, and still work. You can change the molecular structure of

DNA. You can use a different genetic code to turn sequences of

DNA bases into amino acids, the basic building blocks of proteins.

You can even change the number of bases that encodes an amino

acid, from the usual three to four. You can change the list of amino

acids. You can use different proteins for specific functions. Life can

exist without oxygen, without sunlight, and – according to a

conference held at the Royal Society a few years ago – without

water.

Forms of life that don’t use carbon–oxygen chemistry as a
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source of energy have to do something else, and one possibility uses

sulphur and iron instead. Günter Wächtershäuser, a chemist and

patent lawyer, suggested that life on Earth first arose in a

hydrothermal vent on the ocean floor, exploiting the chemicals

that are common in such places, notably iron sulphide.7 With the

aid of small quantities of catalysts such as nickel and cobalt, hot

water flowing over iron sulphide can form reasonably complex

organic molecules, known as metallo-peptides. Some experimental

support exists for these ideas, but it is not clear just how complex

this type of chemistry can become. It is, however, a plausible

alternative to carbon chemistry, and might have given rise to

primitive forms of life.

Less hypothetically, there is a lake at the bottom of the

Mediterranean Sea, 3.5 kilometres down, west of Crete. I say ‘lake’

because a dense layer of unusually salty water has collected there,

pooling on the seabed. It contains hardly any dissolved oxygen, but

a lot of hydrogen sulphide, which oozes out from a thick layer of

mud. The only life that ought to exist in the lake is anaerobic

bacteria, which don’t require oxygen. But in fact there are small,

complex animals, with a hydrogen–sulphur metabolism. Bill Martin,

an evolutionary biologist, believes that these animals change our

view of the origin of eukaryotes.8

The orthodox theory is that eukaryotes evolved because of a

massive build-up in the ocean and the atmosphere of oxygen, the

waste product of photosynthetic bacteria and algae. Oxygen is a

potential source of energy, so organisms could evolve to exploit it.

Mitochondria, vital to eukaryotes, do just that; they also protect the

cell against the toxic effects of oxygen (things burn in it). Martin

argues that oxygen is reactive only when it is in the form of free

radicals, but mitochondria create free radicals, so they make the

problem worse. And extracting energy from oxygen is so complex

that it must have taken a long time to evolve. So for billions of

years the oceans would have been jam-packed with hydrogen

sulphide, and the anaerobes would not have been poisoned by

oxygen. So maybe it wasn’t oxygen that led to the eukaryotes, but

hydrogen and sulphur. The animals in the undersea lake may be

relics of that process, though they will surely have been changed by

more than a billion years of evolution. If Martin is right, Earthly life

began as unearthly life. Since oxygen wasn’t needed here, it’s silly

to think that it must be necessary for aliens.
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There is another argument against the uniqueness of DNA and

the associated chemistry. Agreed, there are millions of different

species on planet Earth, all using the same biochemistry, but that

doesn’t imply that nothing else is possible, because all evolved from

the same primitive ancestral forms. Life reproduces: as soon as

anything works, you find it everywhere. In a sense, those millions

of species provide no more compelling evidence for the necessity of

a particular biochemical scheme that any single one of them would.

Not only that: even on this planet, life exists in wildly different

habitats, so different that until recently biologists denied that life

could ever exist in some of them. These life forms are primitive, on

the level of bacteria. They are collectively known as extremophiles –

organisms that can survive in extremes. Some live happily in

boiling water, others in water that has been supercooled, below its

normal freezing point. Some have been found three kilometres

underground, some in the stratosphere, and some can survive

radiation levels that would be fatal to all other life forms. Late in

2010, a team led by Stephen Giovannoni of Oregon State University

drilled nearly 1,400 metres into the bed of the Atlantic Ocean,

where they found bacteria thriving at a temperature of 1028C.9

NASA scientists have reported that some bacteria in a Californian

lake use arsenic – poisonous to most organisms – in place of the

usual phosphorus, though this finding is controversial.

The term ‘extremophile’ reflects unconscious human bias. To a

creature that lives in boiling water, it is we who are occupying an

extreme environment. Somehow we survive the appalling cold of a

British summer. The word ‘survive’ suggests difficulty, but an

extremophile is not clinging desperately to the edge of survival in

its boiling hot pool: it is comfortable there, and would die if it

moved into water that was merely scaldingly hot. The same goes for

the other class of extremophile, able to live in freezing cold. Our

environment would normally be far too warm for it.

I find it strange that both boiling hot and freezing cold are

somehow lumped together into the single category ‘extreme’, but

the stuff in between is different. It smacks of parochialism, and

reminds me all too closely of Goldilocks and the Three Bears.

I’ll come back to that.
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............
Not so long ago, many people, including scientists, had what they

thought was a very good reason to believe that the Earth is unique,

the only planet that can support life. Their reasoning went much

further: they ‘knew’ that the Earth was the only planet in the Solar

System that could support life, because the Solar System was the

only place in the universe that had planets. In support of this view

was a clear statement of fact: planets round other stars had never

been observed, so their very existence was hypothetical.

Hypotheticals have no place in solid science: the only reason to

think that other planets might exist was pure speculation, based on

our limited knowledge about the formation of the Solar System.

To be sure, this suggested the exact opposite: that there is

nothing very special about the Sun, so similar processes have

probably occurred elsewhere. That meant planets. It was plausible,

but there was no proof, so it wasn’t science.

This particular line of thinking has gone the way of the dodo.

As I write, we know of 518 planets circling other stars10: the

technical term is ‘exoplanets’. More are being discovered every

week. It is becoming obvious that a significant proportion of the

stars in the universe have planets; possibly most of them. We may

never be able to observe the bulk of these worlds directly, but a

random sample usually represents a wider truth. Planets are no

longer the issue. The only reason we didn’t observe them earlier

was that we lacked the technology to detect them. So the frontier

of the debate has retreated to the existence of Earth-like planets.

Almost all known exoplanets are huge, bigger than anything in the

Solar System, dwarfing even Jupiter. The diehards retreated to a

previously prepared position, now insisting that the evidence

merely proves the existence of gigantic planets that could scarcely

be more different from Earth – which to them means no possibility

of life on such worlds. Again, there is actually a good reason why

most of the known exoplanets do not resemble Earth: the methods

used to detect exoplanets work best when the planet is very large.

Improved observation techniques have pushed that frontier back

too: we now know of much smaller exoplanets, and can already

detect the main gases in their atmospheres. In 2008 Mark Swain’s

team at the Jet Propulsion Laboratory in California made the first

detection of an organic molecule, methane, on an exoplanet.11

They found it on HD 189733b, a ‘hot Jupiter’ about 63 light years
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from Earth. Water vapour has been found on GJ 1214b,12 and the

same methods should be able to find oxygen.

This suggests that it is unwise to dismiss reasonable possibilities

on the ground that there are no observations to support them. You

need independent evidence that those possibilities are intrinsically

unlikely. A lack of observations can change at any moment with

the invention of a new technique. So the current absence of

evidence of alien life forms that differ from those on Earth may

simply be due to the absence of evidence of alien life forms. Just as

the absence of evidence of Earth-like planets was, until recently,

due to the absence of evidence of planets – which was not evidence

for the absence of planets, Earth-like or not.

............
The case that complex life elsewhere in the Galaxy, or the universe,

is very uncommon has been made, eloquently and

comprehensively, in Rare Earth. Ward and Brownlee list a large

number of special features of our planet, all supposedly necessary

for life to exist, and then work out how likely such a combination

of features is. Their result is: very unlikely indeed. They don’t rule

out simple life forms, such as bacteria, but they argue persuasively

that anything even as complex as, say, a goldfish, must be a very

rare thing in our universe. They don’t claim that Earth is unique in

having such creatures, but other Earths, if they exist at all, will be

very thinly spread.

I’ll list some examples of these features – they are based on solid

science, much of it surprising and recent, and of interest in its own

right. I’ll restrict attention to three astronomical ones. The first two

are relatively new; the third is much older.

1. Jupiter protects the inner planets, Earth among them, from

being bombarded by comets. A dramatic instance of this process

was the break-up of comet Shoemaker–Levy 9 in 1994. Earlier,

the comet had swung close to Jupiter, and was diverted in its

orbit so that it would return after a few years. As it approached

the giant planet, it broke into twenty pieces, which slammed

into Jupiter releasing the energy of six million megatons of TNT

– roughly six hundred times the world’s total store of nuclear

weapons. If any one of those fragments had hit the Earth,

Profile Books - Maths of Life Data Standards Ltd, Frome, Somerset – 10/2/2011 01 Maths of life Chapters.3d Page 303 of 336

Is Anybody Out There? // 303



nothing higher than bacteria would have survived, and probably

not even them. Without Jupiter, comets would be hitting the

Earth every twenty years or so.

2. The Earth’s Moon keeps our planet’s axis of rotation stable.

Mathematical calculations show that a world lacking a moon

that is large compared with itself will suffer erratic changes in

the direction of its axis over periods of tens of millions of

years.13 Such large moons are uncommon; it is thought that

ours originated from a massive collision between Earth and a

body the size of Mars during the early stages of the formation of

the Solar System. Such collisions are rare.

3. The Earth is situated within the Sun’s habitable zone: a hollow

shell of space inside which liquid water can exist on a planet’s

surface. Get too close to the Sun, and water will turn to steam

and may boil away entirely; too distant, and it will freeze. The

habitable zone is limited: Mercury and Venus, close to the Sun,

are on the inside of it; Mars, Jupiter, Saturn, Uranus and

Neptune are outside it. We got lucky.

Rare Earth lists several dozen such features, and they are regularly

trotted out in television science programmes as proof that Earth is

very close to unique. However, the case for Earth’s rarity, like

premature news of Mark Twain’s death, has been greatly

exaggerated.

Indeed, the importance of each item in the list has been

exaggerated. Worse, the significance of any such list has been

exaggerated. I’ll go through the three items above in turn, and then

turn to my more general objection.

Jupiter. As Shoemaker–Levy 9 shows, there are occasions when

Jupiter does indeed protect the Earth from comets. But that does

not imply that it always has a beneficial effect. It can also divert

incoming comets, causing one that might have missed the Earth to

hit.

World governments and NASA are starting to worry about

NEOs: near-Earth objects. These are lumps of cosmic rock whose

orbit round the Sun can bring them close to Earth. Many are

asteroids, bodies ranging in size from a tennis ball to one-third of

the diameter of the Moon, although the largest bodies in near-Earth

orbits today are much smaller than that. Asteroids are found by

their thousands in the asteroid belt between Mars and Jupiter.
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Indeed, most Earth-crossing asteroids probably originated in the

asteroid belt. If they had stayed there, they would pose no danger

to our world. What made their orbits change, to become Earth-

crossing?

Jupiter.

Mathematical calculations show that Jupiter has a big effect on

asteroid orbits. In fact, as the most massive planet in the Solar

System, Jupiter has a big effect on the orbits of small bodies. One of

the things that Jupiter can do is disturb suitable asteroids, causing

their orbits to elongate until they cross the orbit of Mars. This

makes them Mars-crossing, not Earth-crossing. But now, if they

come close to Mars, they can be diverted again, and now their

orbits can cross the orbit of our own Blue World. So Jupiter centres

the ball, and Mars scores.

Jupiter has two faces. One is that of protector. The other hurls

rocks at us.

Ward and Brownlee discuss this, and argue that the occasional

asteroid impact may be good for evolution, shaking up the

biosphere. And so it might, but I wonder why asteroids are

beneficial in this respect, while comets are not. It seems like special

pleading. In fact, the presence of Jupiter may do more harm than

good.

The Moon. Unlike most astronomers, I’m not convinced that the

current theory of the origin of the Moon is correct,14 but whatever

the mechanism was, it does seem likely that satellites whose size is

comparable to that of their primary planet are quite rare. So I’ll

concede that. And I agree that the presence of such a body does

stabilise the axial tilt. However, it is not at all clear that if a planet’s

axis changes its direction over a period of tens of millions of years,

which is what the mathematics says, then this poses an insuperable

problem for evolution. Earth’s creatures have coped with ice ages

that come and go every ten or twenty thousand years, which is far

more rapid than a change in axial tilt. Land creatures can move as

the climate shifts – we’re talking a few hundred metres per year,

and they’re moving faster than that today in response to climate

change – unless they run out of land, which can happen. (Our

elderly cat moves faster than that when chasing a mouse, but I’m

referring to changes in average geographical location.) Birds can fly

across open sea. And ocean creatures wouldn’t notice any difference.

Since it is generally agreed that life began in the Earth’s oceans, and
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got very complex there, then the tilt of the Earth’s axis doesn’t

matter a hoot.

Habitable zone. The habitable zone of a star is often referred to as

the Goldilocks zone because it’s ‘just right’. The problem with

habitable zone ideas is not that the concept is completely silly, but

that it is too simplistic. It is, for example, not at all clear whether

the Earth is within the Sun’s habitable zone. An airless Earth might

have boiling hot surface temperatures, like the Moon when the Sun

is overhead; on the other hand, one with too little carbon dioxide

or a white reflecting surface might be covered in ice, as some of the

planet is now, and most of it was during the period of Snowball

Earth about 700 million years ago. Both Mars and Venus might

support liquid water in suitable circumstances, but in those that

currently prevail, Mars can get down to 15 degrees below zero and

Venus is hot enough to melt lead. The highest surface temperature

recorded on Mars to date is 278C, but only on rare summer days.

It’s worth taking a closer look at the mathematics of habitable

zones, to see where the difficulties arise. The calculations start from

a central idea in the physics of heat, called a black body. A green

object looks green, to the human visual system, because the object

reflects sunlight in a range of wavelengths that our brains interpret

as ‘green’. A black object does not reflect any wavelengths in the

visible range; black is the brain’s default for such objects. A

physicist’s black body is an idealised and extreme version of this: it

reflects no electromagnetic radiation whatsoever.

However, reflection is not the only way for an object to emit

radiation. A black body at a temperature of zero degrees kelvin –

‘absolute zero’, the lowest possible temperature – would emit no

radiation of any kind. But at any other temperature, a black body

does emit radiation; it just doesn’t do this by reflection. Instead, it

glows incandescently, like a red-hot iron bar. The intensity of

radiation emitted depends on the temperature and the wavelength

of the radiation. Classical physics predicts that a black body should

emit an infinite amount of energy, but that makes no sense. In

1901 Max Planck derived a new formula that agreed with

observations, and this was later interpreted as evidence for a

quantum world.

Planck’s law can be used to derive a formula for the temperature

of a planet orbiting a star, and that lets us calculate where the inner

and outer edges of the habitable zone are. There are two versions of
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the formula. The simplest one models the planet as a black body.

However, a real planet will reflect some of the radiation that hits it,

and the second model takes this into account by incorporating an

extra quantity into the formula. It is called the albedo of the planet,

which is the fraction of incoming radiation that is reflected away.

Only the first version can yield a habitable zone that depends

only on features of the star. As soon as albedo comes into play, the

habitable zone also depends on features of the planet – real or

hypothetical – that is under consideration. The second version is

more general than the first: if we set the albedo to zero, the value

for a black body, we recover the first model. The formula relates the

planet’s temperature to the star’s size, its surface temperature, the

distance from the star to the planet, and the planet’s albedo.15

First, let’s calculate what the Earth’s temperature would be if its

albedo were zero, the value for a black body. The answer is 279K, or

68C, placing us just inside the habitable zone. However, if we use

the observed albedo, which is 0.3, the temperature becomes 254K,

which is �198C – well below the freezing point of water. So

assuming the correct albedo leads to the paradoxical result that the

only known habitable planet in the universe does not lie inside its

star’s habitable zone.

To locate the outer edge of the habitable zone, we consider a

hypothetical planet whose surface temperature is the freezing point

of water, 273K. Then we solve the equation to derive the distance.

For the inner edge, we do the same thing, but using the

temperature of boiling water, 373K. Again, there are two versions.

For an albedo of zero, the value for a black body, the Sun’s

habitable zone extends from 83 million to 156 million kilometres.

If we set the albedo to 0.3, the measured value for the Earth, then

the habitable zone stretches from 69 million to 130 million

kilometres.

The average distances of the four inner planets from the Sun, in

kilometres, are 58 million for Mercury, 108 million for Venus, 150

million for Earth, and 228 million for Mars. So for albedo 0 the

Earth just scrapes inside the Sun’s habitable zone . . . but so does

Venus. For albedo 0.3, only Venus lies inside the habitable zone.

The Earth and Mars are too cold, Mercury too hot.

Why, then, is the Earth habitable? Because its atmosphere

contains greenhouse gases, mainly carbon dioxide and water

vapour, which trap incoming radiation and make it warmer than it
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would be if no atmosphere were present. But the usual concept of a

habitable zone does not take the planet’s atmosphere into account.

The idea that a star has a habitable zone, independent of properties

of the relevant planet, is an oversimplification. Of course, in a

broad qualitative sense it is true that if a planet is too near its star

then any water present on its surface will boil, and if it’s too far

away the water will freeze. But ‘habitable zone’ lends a misleading

air of precision.

Greenhouse warming is just one of a huge variety of effects that

between them pretty much demolish ‘habitable zone’ as a useful

concept. The surface temperature of a planet depends on many

factors, only one of which is how far it is from its star, for a given

heat output. For example, clouds and ice can increase the albedo,

cooling the planet; so can sulphur dioxide. Carbon dioxide,

methane and water vapour can warm it. Feedback loops between

different factors further complicate the possibilities: warming seas

can create clouds that reflect heat and light back, decreasing ice

cover can allow more heat and light in.

Even taking all this into account, it is not true that the only

place where liquid water can exist is on the surface of a planet in

the habitable zone. For example, it used to be thought that Mercury

was locked in a spin–orbit resonance, rotating once during the same

time it took to revolve once round the Sun. If so, the same side

would always face the Sun, just as the same side of the Moon

always faces the Earth (give or take a bit of wobbling, known as

libration). In fact Mercury does not do this, but there’s every reason

to expect that some worlds somewhere in the Galaxy might be very

close to their star – much closer than the habitable zone defined

above – and locked in such a resonance. In fact, this is the case for

at least one exoplanet.16 If so, one side of the planet would be very

hot, the other side very cold . . . and in between there would be a

belt with more moderate temperatures, suitable for liquid water to

exist. ‘Just right’, in fact.

Astronomers are almost certain that liquid water exists on a

number of bodies in our Solar System that are well outside the

Sun’s habitable zone. Paramount among these is Europa, a satellite

of Jupiter. There is convincing evidence that Europa, one-quarter

the diameter of the Earth, has an ocean that contains as much

water as all of Earth’s oceans put together. Yet Europa’s surface is

solid ice. So where is the ocean?
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Under the ice.

Measurements of Europa’s magnetic field reveal changes that

currently seem to be consistent with only one thing: a world-

girdling ocean upon whose surface the ice floats. The water is kept

warm by heat generated in Europa’s core, probably caused by

repeated squeezing by Jupiter’s huge and powerful gravitational

field. Jupiter’s inner three major satellites, Io, Europa and

Ganymede, are trapped in an orbital resonance: while Io goes round

four times, Europa goes round twice and Ganymede once. This

creates unavoidable tidal forces, and squeezing causes friction,

which heats the core. This is not such an outlandish scenario: the

Earth’s continents and seabed of solid rock float on a vast

underground ocean of magma.17

Europa is not alone in having such an ocean. Ganymede and

Callisto may have one too, Io probably has one but it’s sulphur, not

water, and Saturn’s moon Titan may have a subsurface ocean of

slushy liquid methane.

Finally, there is the obvious point that the Earth’s own

extremophiles live in conditions that are outside the habitable

zone: water at temperatures above its normal boiling point, and

below its normal freezing point. Not far outside, but outside all the

same. Could they have evolved in such extreme conditions? That’s

less clear, but we’ve already seen that a plausible theory of the

origin of life has it evolving first as . . . extremophiles.

............
Protective gas giants, stabilising moons, and Goldilocks orbits . . .

Rare Earth lists dozens of such factors, and like those three, most of

them are open to serious challenge. But there is a more general

issue, a mathematical point: logic.

It is all very well to list dozens of special features of the Earth,

all of which definitely played a significant role in the evolution of

life. But it is wrong to conclude from this (alone) that those features

are necessary for life. The correct conclusion is that they were

sufficient. ‘Sufficient’ means that with them, life arose. ‘Necessary’

means that without them, it would not have arisen. The two are

different, and it is the first that the list of features supports. For you

to get wet, it is sufficient to stand outside in the rain without
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protection. But that’s not necessary. You can fall in a lake or take a

bath instead.

Evolution is a universal, and its main feature is that creatures

evolve to suit their habitat. If some form of life can exist in some

habitat, even if it seems hostile to us, then life can evolve to do so.

It doesn’t care about our opinions, because we’re not going to be

living there. If we approach questions about alien life with the tacit

assumption that the only sensible form of life is us, we will ignore

all the other possibilities. The word ‘extremophile’ is human-

centred: it starts from where we are, and declares that to be what’s

sensible and reasonable. The further away we go from our self-

defined centre, the more ‘extreme’ things become.

I remember a museum exhibit about deep-sea fish, which said

something to the effect that ‘their strange shapes reflect the strange

conditions under which they live’. It seems to make sense: strange

conditions imply strange shapes. Not like normal conditions, which

imply normal shapes. Like us. But it’s all back to front. Normal

conditions, in this sense, are the ones we are accustomed to. So are

normal shapes. But we are as different from the fish as they are

from us, in both shape and habitat. To them, we would be strange

and they would be normal.

To evolution, we would both be normal – relative to our

habitat.

............
A more imaginative reading of the Goldilocks tale makes the same

point, and raises a far more interesting set of questions. Mummy

Bear’s wimpy porridge was too cold for Goldilocks, and Daddy

Bear’s macho male porridge was too hot, while Baby Bear’s

intermediate porridge was just right. And so they were – for

Goldilocks.

For Mummy Bear, however, the intermediate porridge was too

warm. For Daddy Bear, it was too cold. Goldilocks’ point of view is

not privileged. Woolly-minded social relativism though it may be, I

think that Mummy and Daddy Bear both had valid opinions too.

Discussions of such things as Jupiter’s alleged importance in

protecting the Earth from comet impacts often run along the

following lines: ‘Without Jupiter, the Earth would be hit by a comet

every twenty years.’ There’s a sense in which such statements are
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true, but a closer look reveals that they don’t address anything of

substance. They’re like sports commentators saying, ‘If only he

hadn’t been offside, that goal he just scored would have won the

match.’ But if the player had not been offside, he would have been

in a different place. To score a goal, he would have to have kicked

the ball differently. You can’t just change one factor, offside, and

keep the rest exactly as before.

It’s the same with Jupiter. Yes, if you took the Solar System as it

is today, and magically spirited Jupiter away, comets would rain in

upon an unprotected Earth. But if the Solar System had evolved

without Jupiter, it would not be the same – in all other respects – as

it is. It would have been quite different. More comets would have

hit the Earth in the past, for instance, leaving fewer to hit it now.

The mathematics of many bodies moving under gravity, called

celestial mechanics, is revealing an unsuspected aspect of planetary

systems. Namely, that they are systems. Over billions of years, they

organise themselves in complex ways. The biggest planets, the

Jupiter-like gas giants, have the biggest influence. Other, lesser

worlds, and even those only slightly less massive, get rearranged

until the entire system fits together and acts as a whole. This is

celestial Gaia.

Very recently, it has been discovered that Jupiter’s influence on

the Solar System has created a kind of celestial subway, a network

of gravitational ‘tubes’ that can be perceived mathematically but

consist of empty space.18 These tubes are pathways along which

matter can move more efficiently. The arrangement has come about

as a result of subtle feedback effects, caused by gravitation. The

equations for gravity are nonlinear, meaning that effects are not

proportional to causes. Nonlinear systems have a tendency to

behave in surprisingly complicated ways, and they tend to organise

themselves by settling into special forms of behaviour.

Considering a Solar System without Jupiter, and arguing that it

wouldn’t be so hospitable for life, makes the same mistake as the

sports commentator. It forgets that if you change one thing, you

change everything. The evidence to date shows that most solar

systems have huge planets like Jupiter. It seems likely that most of

them also have smaller planets, though these are very difficult to

spot at the moment. If so, then the Jupiters will organise their lesser

brethren, and often enough there will be a few small worlds closer

to the star, and some big ones further out. So even if it is indeed
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true that planets like Jupiter provide overall protection against

comets and the like, it is no huge coincidence if one of them exists

in roughly the right orbit. Nature does not simply build solar

systems by plonking down planets at random. They have a self-

consistent structure.

This is not to say that habitable planets are inevitable. There are

many ways to fail to be habitable. But there are many stars – at

least 461022 of them – in the universe, and probably even more

planets. There are many ways to be habitable too, and habitable

planets will not all be carbon copies of the Earth. Rerun the Solar

System again, from different beginnings, and there’s a fair chance

that at least one world might still be suitable for life.

At some point in its history. Mars may have been suitable for

Earth-like life, a billion or more years ago. In fact, it has been

suggested that Earthly life was originally seeded from Mars. The

current consensus is that this is probably wrong, but it’s not totally

out of the question. It will take a close look at Mars to decide the

matter.

............
In contrast to the Rare Earth story, I will describe some

mathematical simulations and models devised by Harvard

astrophysicists Dimitar Sasselov, Diana Valencia and Richard J.

O’Connell, which suggest that planets capable of supporting Earth-

like life may be far more common than has previously been

thought.19 Their results also call into question the common view

that Earth is the ideal kind of world for the kind of life that we find

here.

The starting point for their work is the realisation that the

conditions that make our kind of life possible do not necessarily

require the planets concerned to be of a similar size to our own.

What matters is that they should resemble our own world in one

key respect: the occurrence of plate tectonics. There is a growing

suspicion that the dynamic movement of continents helps to

stabilise the Earth’s climate. In particular, carbon dioxide is recycled

from the atmosphere to the ocean floor, where it is taken up by

marine microorganisms and turned into carbonate; then the

subducted carbonate is turned back into carbon dioxide by

volcanoes. A stable climate helps liquid water to exist for
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geologically long periods of time, and water is required for our kind

of life, even if other kinds might exist without it. That, in turn,

enables evolution to generate complex water-dependent life forms.

It had been assumed that plate tectonics is rare, and that it

requires a world of comparable size to our own. The crust of a

much smaller world could not break up into suitable plates, while a

much larger world would be a gas giant and not have a surface as

such anyway. Sasselov and colleagues have shown that both these

assumptions are false. Plate tectonics may actually be very common,

and could occur on planets much larger than the Earth. The reason

is the possibility of ‘super-Earths’: rocky worlds with a similar

geological composition to ours, but having much greater mass. No

one had previously investigated the internal geological processes of

such a world, probably because no such exoplanets were then

known. Indeed, virtually all known exoplanets were so large that

they had to be gas giants, and this was still the case when the team

began their modelling and published their first paper.

By 2005, however, the picture had already started to change

with the discovery of the exoplanet GJ 876d, which orbits the star

Gliese 876. This was smaller than the typical gas giant exoplanets

then known, though still much larger than the Earth; there were

hints that it might be mostly rock, rather than gas. However, there

was no good way to measure the planet’s density, which would

decide the issue, because the only known method required the

planet to cross the face of its parent star when viewed from Earth.

In 2009 a new exoplanet was found, CoRoT-7b, which did cross the

face of its star. Now a density estimate was feasible, and the result

was definitive: CoRoT-7b is made from rock. It has about 4.8 times

the mass of the Earth and 1.7 times its radius. By 2010 a second

super-Earth that transits its star had been located, known as

GJ 1214b, with a density closer to that of water than rock,

suggesting that it has a thick gaseous atmosphere. This planet has

6.5 times the mass of the Earth and 2.7 times its radius.

Now there were real planets to supplement the theoretical

analysis made by Sasselov and his colleagues, adding to the interest

of such calculations. They first showed that there are two main

kinds of super-Earth: those with a lot of water, and those with

much less. The first kind would have formed quite a long way out

from the parent star, where they would pick up large amounts of

ice. The second kind would have formed further in, and be
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relatively dry. Both kinds would acquire a large iron core as the

denser parts of their molten material sank towards the centre, and a

silicate mantle as the lighter materials rose. The water-rich super-

Earths would have very deep oceans above the mantle; the drier

ones would have thin oceans, or none.

Because the pressure at the centre of a large super-Earth is

higher than it is for our own world, the iron core will solidify faster.

This probably implies that such a planet will have little or no

magnetic field, and that might be bad for the occurrence of life,

because magnetic fields shield the surface from radiation. However,

so do deep oceans, and in any case we don’t know how necessary a

magnetic field really is. Some Earthly bacteria are radiation-

resistant, for example.

The interior of a large super-Earth should contain the

radioactive elements uranium and thorium, which generate most of

the heat that keeps our own planet’s core molten. Because these

elements occur in much the same proportions throughout the

Galaxy, the large super-Earth would have more of them than our

own world does, and its core would be considerably hotter. The

extra heat would cause convection in the mantle to be more

vigorous, and this in turn would drive the movement of large plates

at the boundary of the rock, much as it does on Earth. It turns out

that these plates would be thinner than they are on Earth, because

they move more rapidly and so have less time to thicken up by

cooling. They would be easier to deform, except that the planet’s

greater gravity exerts more pressure on fault lines, so the plates

don’t slide as easily as they do here. These two effects tend to

cancel out, so overall the frictional resistance when the plates slide

past one another is much the same, regardless of size.

In short: plate tectonics is likely to be more common on large

super-Earths than it is on Earth-like terrestrial planets that are

similar in size to our own world. It also happens faster, which

means that the cycle of subduction and volcanic activity that tends

to keep the carbon dioxide concentration fairly stable would, if

anything, work better. So a super-Earth that is considerably larger

than our own world would probably have a more stable climate

than ours, on geological timescales, making it easier for complex

life to evolve.

This analysis completely changes the ‘rare Earth’ picture.

Terrestrial planets, roughly the same size as our own, should occur
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fairly often, but comparatively speaking they are probably fairly

rare. But the likely number of super-Earths in the Galaxy is far

greater than the number of terrestrial planets, so the prospects for

life are much better than they would appear if we were to focus

solely on terrestrial planets. It also casts serious doubt on Goldilocks

arguments, because it turns out that the Earth, far from being ‘just

right’ for plate tectonics to arise, is very close to the lower extreme

of the range of sizes for which such effects can happen. If the Earth

were slightly smaller, it would not have plate tectonics, and that

might have caused it not to evolve complex life.

The ideal Earth-like planet, it seems on this analysis, is

considerably larger than the Earth. We just scraped into the

acceptable range.

There is a general message in this work, and it is one that needs

to be far more widely appreciated. The way to understand how

likely alien life might be is not to focus on conditions that are

virtually identical to those found on this world, and then argue –

typically confusing sufficiency with necessity – that only those

conditions are suitable for life. What really matters is just how

different a planet can be from ours, and still support its own form of

life, adapted to its prevailing conditions by evolution.

How diverse can living creatures, and their worlds, be? You

won’t find out if you start by assuming they all have to be just like

us.

............
Perhaps alien life has already been discovered.

In 1997 NASA launched the Cassini–Huygens spacecraft, a

mission to Saturn. Seven years later the craft reached its

destination. The Huygens probe landed on one of Saturn’s moons,

Titan. The Cassini spacecraft went into orbit round the planet. One

of the early discoveries – dramatic, though to some extent expected

– was that Titan has lakes. Because of the deep cold at that distance

from the Sun, the lakes are not of water, but liquid methane and

ethane.

Now some scientists are wondering whether Cassini has found

signs of an exotic kind of life. This is one possible explanation for

the strange behaviour of two gases on Titan: hydrogen and

acetylene. There ought to be quite a lot of hydrogen, spread fairly
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uniformly in the moon’s atmosphere. Darrell Strobel, working at

Johns Hopkins University, has discovered that the hydrogen streams

downwards through the atmosphere and disappears near the

surface. Astronomers had expected acetylene to be fairly common

too, produced by simple chemical reactions in Titan’s atmosphere

and deposited on the surface.

But there isn’t any.

In 2005 Chris MacKay, a planetary scientist at NASA, realised

that hypothetical methane-based microbial life would be very likely

to get its energy by reacting hydrogen with acetylene, in the same

way that most Earthly life reacts oxygen with molecules that

contain carbon. The new observations are consistent with this kind

of life inhabiting Titan’s surface, and using up all of the missing

hydrogen and acetylene.

Of course this doesn’t come close to a proof that Titan harbours

such exotic life forms, and Mark Allen (also at NASA) has suggested

that non-living processes are a more likely explanation. Cosmic rays

could convert acetylene to more complex substances, for instance,

when they collide with its molecules. But it does illustrate the value

of not assuming that life everywhere must be very much like life

here. By doing so, we could have stood a small but significant

chance of missing an alien life form in our own backyard.

Watch this space.
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19 The Sixth Revolution
.................................

Mathematics has played a central role in the physical sciences for

hundreds of years. In 1623, in The Assayer, Galileo wrote:

Philosophy is written in this grand book, the universe, which

stands continually open to our gaze. But the book cannot be

understood unless one first learns to comprehend the language

and read the characters in which it is written. It is written in

the language of mathematics, and its characters are triangles,

circles, and other geometric figures, without which it is

humanly impossible to understand a single word of it; without

these one is wandering in a dark labyrinth.

His words were prophetic. By the seventeenth century, mathematics

had become a major driving force behind dramatic advances in the

physical sciences, and today mathematics and physics (along with

astronomy, chemistry, engineering and related areas) have become

inseparable.

Until fairly recently, however, mathematics played a much

smaller role in the development of the biological sciences. One

reason is the old joke about a farmer who hires some

mathematicians to help him improve his milk yield. When they

present him with their report, he opens it, only to read the opening

sentence: ‘Consider a spherical cow.’ Galileo’s language of triangles

and circles seems far removed from the organic forms of the living

world. You don’t find a cow in Euclid.

This story is amusing, and holds a lesson for wannabee

biomathematicians. But it also reveals a misunderstanding about

mathematical models. They don’t have to be an exact
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representation of reality to be useful. In fact, making them less

realistic generally makes them more useful, as long as they still

provide useful insights. A model that is as complex as the process or

thing it represents is likely to be too complex to be useful. A simple

model is easier to work with. So a spherical cow is useless if you

want it to give birth to a calf, but it might be a useful

approximation if you’re wondering about the spread of some

bovine skin disease.

A good model must, of course, be sufficiently realistic that it

doesn’t leave out anything of vital importance. If you model a

rabbit population using immortal rabbits, you will observe a

population explosion that has little to do with reality. But even

then, your model may capture how a small population grows before

it hits environmental limits – so don’t dismiss it too readily. What

counts is what the model predicts, not what it leaves out.

Part of the art of biomathematics is the selection of useful

models. Another part is taking the biology seriously, and not

missing out anything crucial. A third is to pay attention to the

problems that biologists want to solve. But sometimes it is also

necessary to take a step back, try out a new mathematical idea in a

simple but unrealistic setting, and see where that leads. There is

another old joke, about a drunk searching under a lamppost for his

keys. ‘Did you drop them here?’ ‘No, but this is the only place

where there’s enough light to look.’ It is not widely appreciated

that the joke’s original context, in Computer Power and Human

Reason by Joseph Weizenbaum, was an analogy with science. The

point was that in science you have to search under the lamppost, or

you’ll never find anything. Maybe, just maybe, you’ll find a torch,

even if the keys are somewhere along the road in the gutter. Several

of the topics in Mathematics of Life started out as wild

oversimplifications, the best that could be done at the time, but

eventually turned out to be really informative about biology. It’s

important not to strangle a good idea at birth.

Looking back on the story of how biology started to embrace

mathematics, one thing stands out: it was doing so long before

anyone noticed. Mendel’s discoveries hinged on simple

mathematical patterns in the numbers of plants with particular

characters. Although the early development of the microscope was

empirical, the mathematics of optics soon entered into the story,

because you can’t develop really good microscopes without it. One
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of the clues to the structure of DNA was Chargaff’s rule, a striking

but unexplained numerical relationship that couldn’t be

coincidence. Bragg’s law for X-ray diffraction was also crucial, and

much of what we know about the structure of biologically

significant molecules depends on it. And although evolution did

not acquire any mathematical expression until recently, Darwin was

on the Beagle because, among other activities, the vessel was

carrying out a chronometric survey – a mathematical technique for

finding longitude.

My sixth revolution, then, is not revolutionary because no one

ever used mathematics to solve a biological problem before. What is

revolutionary is the breadth of the methods used, and the extent to

which they are starting to set the agenda in some areas of biology. I

doubt that mathematics will ever dominate biological thinking in

the way it now does for physics, but its role is becoming essential.

In the twenty-first century, biology makes use of mathematics in

ways that no one would have dreamed of at the start of the

twentieth. By the time we get to the twenty-second century,

mathematics and biology will have changed each other out of all

recognition, just as mathematics and physics did in the nineteenth

and twentieth centuries.

In Darwin’s day, geology, not mathematics, was vital to the

nascent theory of evolution. In the 1960s, chemistry became an

essential foundation for cell biology. Then computer science joined

in, with the advent of bioinformatics. Now physics and

mathematics are entering the fray. And it’s not just biology that is

changing in this way: so are all the other branches of science.

Conventional borders in science are breaking down. You can no

longer study biology as if the rest of science didn’t exist.

Instead of isolated clusters of scientists, obsessed with their own

narrow speciality, today’s scientific frontiers increasingly require

teams of people with diverse, complementary interests. Science is

changing from a collection of villages to a worldwide community.

And if the story of mathematical biology shows anything, it is that

interconnected communities can achieve things that are impossible

for their individual members.

Welcome to the global ecosystem of tomorrow’s science.
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.................................

Chapter 1: Mathematics and Biology

1 More precisely, the common house cat is Felis sylvestris catus, but its

binomial name is Felis catus.

2 J.D. Watson and F.H. Crick, ‘Molecular structure of nucleic acids: a

structure for deoxyribose nucleic acid’, Nature 171 (1953) 737–738.

3 The date depends on what you count as ‘completion’. A draft sequence

was published in 2000, a so-called ‘complete’ draft in 2003. The

sequence for the final chromosome, chromosome 1, was published in

May 2006 in Nature. Some gaps remain, so it is arguable that the task is

not yet finished. There are several thousand known gaps,

inconsistencies and errors, currently being tidied up by a dedicated

team of biologists.

Chapter 2: Creatures Small and Smaller

1 For an animation, see www.cellimagelibrary.org/images/8082

Chapter 3: Long List of Life

1 Most taxonomists consider Cyanistes to be a subgenus of the genus

Parus, but the British Ornithologists’ Union considers it to be a distinct

genus, on the basis of DNA sequencing (specifically, the mitochondrial

DNA sequence of cytochrome B) which shows that these birds differ

significantly from the other tits. As regards finer distinctions,

C. caeruleus subdivides into at least nine subspecies.

Chapter 4: Florally Finding Fibonacci

1 H. Vogel, ‘A better way to construct the sunflower head’, Mathematical

Biosciences 44 (1979) 179–189.

2 S. Douady and Y. Couder, ‘Phyllotaxis as a self-organised growth
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process’, in Growth Patterns in Physical Sciences and Biology (ed. J.-M.

Garcia-Ruiz et al.), Plenum Press, New York (1993) 341–351.

3 L.S. Levitov, ‘Phyllotaxis of flux lattices in layered superconductors’,

Physics Review Letters 66 (1991) 224–227; M. Kunz, ‘Some analytical

results about two physical models of phyllotaxis’, Communications in

Mathematical Physics 169 (1995) 261–295.

4 The species is Echinocactus grusonii inermis. See www.maths.surrey.ac.

uk/hosted-sites/R.Knott/Fibonacci/fibnat.html#nonfib

5 G.W. Ryan, J.L. Rouse and L.A. Bursill, ‘Quantitative analysis of

sunflower seed packing’, Journal of Theoretical Biology 147 (1991) 303–

328.

6 P.D. Shipman and A.C. Newell, ‘Phyllotactic patterns on plants’,

Physics Review Letters 92 (2004) 168102.

7 A.C. Newell, Zhiying Sun and P.D. Shipman, ‘Phyllotaxis and patterns

on plants’, preprint, University of Arizona 2009.

Chapter 5: The Origin of Species

1 ‘Presidential Address’, Proceedings of the Linnaean Society, 24 May (1859)

viii.

2 F. Darwin (ed.), The Foundations of The Origin of Species. Two essays

written in 1842 and 1844. Cambridge University Press, Cambridge

(1909).

3 At first sight it is difficult for a modern mind to understand how

anyone could arrive at such a specific date. The Book of Genesis, for

instance, does not tell us how long Adam and Eve lived in the Garden

of Eden before being expelled. But Ussher’s deductions from

genealogical records in the Old Testament convinced him that the date

of creation was precisely 4,000 years before the birth of Christ. If

Ussher could date the nativity accurately, he would automatically date

the creation. At that time the consensus among theologians was that

Jesus was born in 4 BC, hence 4004 BC for the Creation. Ussher could

date other Biblical events as well: Noah’s flood, he found, occurred in

2348 BC.

4 A survey by Gallup in 2004 indicated that about 45% of Americans

accept both a 10,000-year-old Earth and the divine origin of the

planet, 38% assigned the Earth’s origin to God but preferred a

timescale of millions of years, and 13% believed that it took millions

of years and God played no part in the process. In a 1997 Gallup poll

of Americans with science degrees, only 5% thought that the Earth was

less than 10,000 years old. Another 40% accepted divine creation, but
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placed it millions of years in the past. The remaining 55% believed

that the Earth was extremely ancient, and that God played no role in

the evolution of humans. Among those earning less than $20,000 per

year, the corresponding figures were 59%, 28% and 6.5%; among those

earning more than $50,000 per year they were 29%, 50% and 17%.

5 The poem was written in 1849, twenty years before the Origin

appeared. But it was influenced by the 1844 book Vestiges of the Natural

History of Creation, published anonymously by Robert Chambers. This

book described the transmutation of species, the evolution of stars and

other speculative scientific theories, and softened up public opinion for

later ideas about evolution. It found favour with radicals, but once its

implications had sunk in, it was denounced by the establishment for

its alleged materialism.

6 Think of football. Ignoring draws, one team must win and one team

must lose in each match. But winning is not purely random. Teams

that have greater skill with the ball tend to win more matches. If we

define ‘skill’ tautologously, in terms of which team wins, the above

statement will still be true. However, that’s the start of understanding,

not the end. On closer examination we can discover which abilities

with the ball, or strategy, or strength, or passion or ‘belief’ make teams

more likely to win than others. If we could kill off losing teams, and

clone winning ones, along with their skills, the standard of play would

generally improve.

Louis Amaral used network methods to analyse the skills of teams

in the 2008 UEFA European Football Championship, assigning points

for precision in passing, shots at goal, and so on. These data, derived

from video footage of the games, were used to assign a skill level to

each team. This ranking closely matched the actual results in the

tournament. See J. Duch, J.S. Waitzman and L.A.N. Amaral,

‘Quantifying the performance of individual players in a team activity’,

PLoS ONE 2010 5(6): e10937. doi:10.1371/journal.pone.0010937.

7 Two small herbivorous dinosaurs are happily eating plants when they

spot an approaching velociraptor. (It used to be tyrannosaur, but we

are in the post-Jurassic Park era now.) One of them immediately starts

to run. ‘There’s no point in running away,’ says the other. ‘You can’t

outrun a velociraptor.’ The first one turns and shouts back over its

shoulder, ‘No, but I can run faster than you!’

8 Actually, this is a simplification. Some regions of the genome are more

likely to change than others, for instance.
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9 Theodosius Dobzhansky, ‘Nothing in biology makes sense except in

the light of evolution’, American Biology Teacher 35 (1973) 125–129.

10 In 1841 Richard Owen, a leading palaeontologist, found an incomplete

fossil that he thought was a hyrax (because of its teeth) and assigned it

to a new genus, Hyracotherium. In 1876 Othniel Marsh, Owen’s rival,

discovered a complete skeleton, obviously horse-like, and assigned it to

another new genus, Eohippus (dawn horse). Later it became clear that

the two fossils belonged to the same genus, and by the rules of

taxonomy the name that was the first to be published won. So the

evocative ‘dawn horse’ was lost, and a scientific misconception was

preserved.

Chapter 6: In a Monastery Garden

1 Perhaps too well: reanalysis of Mendel’s data suggests that the fit is

better than we should expect statistically. Perhaps there was some

subconscious massaging of the data in ambiguous cases. See R.A.

Fisher, ‘Has Mendel’s work been rediscovered?’, Annals of Science 1

(1936) 115–137.

2 This convention is not obvious. Usually the symbols are standardised

so that in AB the factor A comes from the father and B from the

mother, so AB and BA are potentially distinguishable. Mendel’s

experiments were what suggested that AB¼BA.

Chapter 7: The Molecule of Life

1 Originally deoxyribose nucleic acid. See the quote from Crick and

Watson on p. 6.

2 This may seem a chicken-and-egg situation: you need DNA to specify

the enzymes, and you need the enzymes to copy DNA. Like all such

puzzles, the answer is presumably that this feedback loop had simpler

origins, without this recursive structure.

3 Mitochondria of animals or microorganisms (but not plants) use UGA

(U¼uracil) to encode tryptophan rather than STOP. When translated by
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dw

dt
¼ bv � gw
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10ð5þ ffiffiffi

5
p Þfn, where f is the

golden number 1
2ð1þ ffiffiffi

5
p Þ~1:618034.
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dN

dt
¼ rN 1�N

K

� �

where r and N are constants; here we can interpret r as the

unconstrained growth rate, and K is the maximum population size.

The actual growth rate, at population N, is r(1�N/K), which depends

on N: such a growth rate is said to be density-dependent.
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R

2D

r
1� a

e

� �1=4

where Tp is the temperature of the planet, Ts is the temperature of the

star, R is the radius of the star, D is the distance from the star to the
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